ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Доледенок А.В.

Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Представьте следующие рациональные числа в виде десятичных дробей:
  а) 1/7;   б) 2/7;   в) 1/14;   г) 1/17.

   Решение

Все задачи автора

Страница: << 1 2 [Всего задач: 9]      



Задача 67454

Темы:   [ Биссектриса делит дугу пополам ]
[ Вспомогательные подобные треугольники ]
[ Инверсия помогает решить задачу ]
[ Изогональное сопряжение ]
Сложность: 4+
Классы: 9,10,11

Высоты $AA_1$, $BB_1$, $CC_1$ остроугольного треугольника $ABC$ пересекаются в точке $H$. Биссектриса угла $CBH$ пересекает отрезок $CH$ в точке $X$, биссектриса угла $BCH$ пересекает отрезок $BH$ в точке $Y$. Обозначим величину угла $XA_1Y$ через $\alpha$. Аналогично определим $\beta$ и $\gamma$. Найдите значение суммы $\alpha + \beta + \gamma$.

Прислать комментарий     Решение

Задача 65809

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Прямая Эйлера и окружность девяти точек ]
[ Вписанный угол, опирающийся на диаметр ]
[ Центр поворотной гомотетии ]
[ Применение проективных преобразований прямой в задачах на доказательство ]
Сложность: 5-
Классы: 9,10,11

BB1 и CC1 – высоты треугольника ABC. Касательные к описанной окружности треугольника AB1C1 в точках B1 и C1 пересекают прямые AB и AC в точках M и N соответственно. Докажите, что вторая точка пересечения описанных окружностей треугольников AMN и AB1C1 лежит на прямой Эйлера треугольника ABC.

Прислать комментарий     Решение

Задача 66146

Темы:   [ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Три точки, лежащие на одной прямой ]
[ Точка Лемуана ]
[ Симметрия помогает решить задачу ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 5
Классы: 9,10,11

В остроугольном неравнобедренном треугольнике ABC проведены высоты AA1, BB1 и CC1. Пусть ω – его описанная окружность, точка M – середина стороны BC, P – вторая точка пересечения описанной окружности треугольника AB1C1 и ω, T – точка пересечения касательных к ω, проведённых в точках B и C, S – точка пересечения AT и ω. Докажите, что P, A1, S и середина отрезка MT лежат на одной прямой.

Прислать комментарий     Решение

Задача 66554

Темы:   [ Трапеции ]
[ Замечательное свойство трапеции ]
Сложность: 5
Классы: 8

Дана трапеция ABCD с основаниями AD и BC. Перпендикуляр, опущенный из точки A на сторону CD, проходит через середину диагонали BD, а перпендикуляр, опущенный из точки D на сторону AB, проходит через середину диагонали AC. Докажите, что трапеция равнобокая.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .