Страница: 1
2 3 4 5 6 7 >> [Всего задач: 78]
Докажите, что инверсия с центром в вершине
A
равнобедренного треугольника
ABC (
AB =
AC) и степенью
AB2
переводит основание
BC треугольника в дугу
BC
описанной окружности.
В сегмент вписываются всевозможные пары касающихся
окружностей. Найдите множество их точек касания.
|
|
|
Сложность: 4+ Классы: 9,10,11
|
Даны три окружности. Первая и вторая пересекаются в точках $A_0$ и $A_1$, вторая и третья – в точках $B_0$ и $B_1$, третья и первая – в точках $C_0$ и $C_1$. Пусть $O_{i,j,k}$ – центр описанной окружности треугольника $A_i B_j C_k$. Через все пары точек вида $O_{i,j,k}$ и $O_{1-i,1-j,1-k}$ провели прямые. Докажите, что эти 4 прямые пересекаются в одной точке или параллельны.
|
|
|
Сложность: 4+ Классы: 9,10,11
|
По окружности $\Omega$ движется точка $P$. На окружности $\Omega$ зафиксированы точки $A$ и $B$. Точка $C$ – произвольная точка внутри круга с границей $\Omega$. Общие внешние касательные к окружностям, описанным около треугольников $APC$ и $BCP$, пересекаются в точке $Q$. Докажите, что все точки $Q$ лежат на двух фиксированных прямых.
|
|
|
Сложность: 5- Классы: 9,10,11
|
Найдите множество точек касания пар окружностей,
касающихся сторон данного угла в данных точках
A и
B.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 78]