ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Противоположные стороны выпуклого шестиугольника параллельны. Hазовём высотой такого шестиугольника отрезок с концами на прямых, содержащих противолежащие стороны и перпендикулярный им. Докажите, что вокруг этого шестиугольника можно описать окружность тогда и только тогда, когда его высоты можно параллельно перенести так, чтобы они образовали треугольник.

Вниз   Решение


Числа в вершинах

В неориентированном графе без кратных ребер и петель
расставить в вершинах числа так, чтобы если вершины
соединены ребром, то числа имели общий делитель, а если нет - то нет.

Входные данные.
В файле INPUT.TXT записано число N (0<N<7) - количество вершин в графе.
Затем записана матрица смежности.

Выходные данные.
В файл OUTPUT.TXT вывести N натуральных чисел из диапазона Longint,
которые вы предлагаете приписать вершинам.

Пример файла INPUT.TXT	
3
0 1 1
1 0 0
1 0 0	

Пример файла OUTPUT.TXT
6 2 3

ВверхВниз   Решение


Точка M, лежащая вне круга с диаметром AB, соединена с точками A и B. Отрезки MA и MB пересекают окружность в точках C и D соответственно. Площадь круга, вписанного в треугольник AMB, в четыре раза больше, чем площадь круга, вписанного в треугольник CMD. Найдите углы треугольника AMB, если известно, что один из них в два раза больше другого.

ВверхВниз   Решение


На окружности по разные стороны от диаметра AC расположены точки B и D. Известно, что  AB = CD = 1,  а площадь треугольника ABC втрое больше площади треугольника BCD. Найдите радиус окружности.

ВверхВниз   Решение


Можно ли нарисовать на плоскости четыре красных и четыре чёрных точки так, чтобы для каждой тройки точек одного цвета нашлась такая точка другого цвета, что эти четыре точки являются вершинами параллелограмма?

ВверхВниз   Решение


Докажите, что для любых целых чисел p и q  (q ≠ 0),  справедливо неравенство  

ВверхВниз   Решение


Точка A лежит на окружности. Найдите геометрическое место таких точек M, что отрезок AM делится этой окружностью пополам.

ВверхВниз   Решение


Решить в натуральных числах уравнение:  

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 40]      



Задача 60621

Темы:   [ Цепные (непрерывные) дроби ]
[ Приближения чисел ]
[ Линейные рекуррентные соотношения ]
Сложность: 5-
Классы: 10,11

Докажите, что для любых целых чисел p и q  (q ≠ 0),  справедливо неравенство  

Прислать комментарий     Решение

Задача 98024

Темы:   [ Уравнения в целых числах ]
[ Цепные (непрерывные) дроби ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 2
Классы: 7,8,9

Решить в натуральных числах уравнение:  

Прислать комментарий     Решение

Задача 60617

Темы:   [ Приближения чисел ]
[ Цепные (непрерывные) дроби ]
Сложность: 3+
Классы: 9,10,11

Найдите рациональное число, которое отличается от числа
  а)  α = ;   б)  α = 2 + ;   в)  α = 3 +   не более чем на 0,0001.

Прислать комментарий     Решение

Задача 60622

Темы:   [ Числа Фибоначчи ]
[ Цепные (непрерывные) дроби ]
[ Алгоритм Евклида ]
Сложность: 4-
Классы: 9,10,11

Докажите, что при  k ≥ 1  выполняется равенство:   = [aFk; aFk–1, ..., aF0],   где {Fk} – последовательность чисел Фибоначчи.

Прислать комментарий     Решение

Задача 79628

Темы:   [ Теория алгоритмов (прочее) ]
[ Цепные (непрерывные) дроби ]
Сложность: 4+
Классы: 10,11

Прибор для сравнения чисел  logab  и  logcd  (a, b, c, d > 1)  работает по правилам: если  b > a  и  d > c,  то он переходит к сравнению чисел  logab/a  и  logcd/c  если  b < a  и  d < c,  то он переходит к сравнению чисел  logdc  и  logba;  если  (b − a)(d − c) ≤ 0,  то он выдаёт ответ.
  а) Покажите, как прибор сравнит числа  log2575  и  log65260.
  б) Докажите, что любые два неравных логарифма он сравнит за конечное число шагов.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 40]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .