ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 40]      



Задача 60624

Темы:   [ Цепные (непрерывные) дроби ]
[ Квадратные уравнения. Формула корней ]
[ Рациональные и иррациональные числа ]
[ Целочисленные и целозначные многочлены ]
Сложность: 4-
Классы: 10,11

Докажите, что если квадратное уравнение с целыми коэффициентами имеет корень  [],  то вторым корнем служит число   

Прислать комментарий     Решение

Задача 60626

Темы:   [ Цепные (непрерывные) дроби ]
[ Квадратный трехчлен (прочее) ]
Сложность: 4-
Классы: 10,11

Докажите, что если квадратное уравнение с целыми коэффициентами имеет корень  u = [a; ],  то вторым корнем будет число  

Прислать комментарий     Решение

Задача 60600

 [Цепные дроби и электрические цепи]
Тема:   [ Цепные (непрерывные) дроби ]
Сложность: 4
Классы: 10,11

Для данного рационального числа a/b постройте электрическую цепь из единичных сопротивлений, общее сопротивление которой равнялось бы a/b. Как такую цепь можно получить при помощи разбиения прямоугольника a×b на квадраты из задачи 60598?

Прислать комментарий     Решение

Задача 60601

Темы:   [ Цепные (непрерывные) дроби ]
[ Линейные рекуррентные соотношения ]
[ Индукция (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4
Классы: 9,10,11

  Пусть a0 – целое, a1, ..., an – натуральные числа. Определим две последовательности
P–1 = 1,  P0 = a0,  Pk = akPk–1 + Pk–2  (1 ≤ k ≤ n);   Q–1 = 0,  Q0 = 1,  Qk = akQk–1 + Qk–2  (1 ≤ k ≤ n).
  Дроби Pk/Qk называются подходящими дробями к числу  [a0; a1, a2, ..., an].
  Докажите, что построенные последовательности для k = 0, 1, ..., n обладают следующими свойствами:
    а)  Pk/Qk = [a0; a1, a2,..., ak];
    б)  PkQk–1Pk–1Qk = (–1)k+1;
    в)   (Pk, Qk) = 1.

Прислать комментарий     Решение

Задача 60607

Темы:   [ Цепные (непрерывные) дроби ]
[ Предел последовательности, сходимость ]
Сложность: 4
Классы: 10,11

Докажите, что для любой бесконечной цепной дроби   [a0; a1, ..., an, ...]  существует предел её подходящих дробей – иррациональное число α. Объясните, почему если это число α разложить в бесконечную цепную дробь при помощи алгоритма задачи 60606, то получится бесконечная цепная дробь, равная исходной.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 40]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .