ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Будем называть клетчатый многоугольник выдающимся, если он не является прямоугольником и из нескольких его копий можно сложить подобный ему многоугольник. Например, уголок из трёх клеток – выдающийся многоугольник (см. рис.).

  а) Придумайте выдающийся многоугольник из четырёх клеток.
  б) При каких  n > 4  существует выдающийся многоугольник из n клеток?

Вниз   Решение


CM и BN – медианы треугольника ABC, P и Q – такие точки соответственно на AB и AC, что биссектриса угла C треугольника одновременно является биссектрисой угла MCP, а биссектриса угла B – биссектрисой угла NBQ. Оказалось, что  AP = AQ.  Следует ли из этого, что треугольник ABC равнобедренный?

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD заключены две окружности одинакового радиуса r, касающиеся друг друга внешним образом. Центр первой окружности находится на отрезке, соединяющем вершину A с серединой F стороны CD, а центр второй окружности находится на отрезке, соединяющем вершину C с серединой E стороны AB. Первая окружность касается сторон AB, AD и CD, а вторая окружность касается сторон AB, BC и CD. Найдите AC.

ВверхВниз   Решение


Даны параллелограмм ABCD и некоторая точка M. Докажите, что  SACM = | SABM±SADM|.

ВверхВниз   Решение


Гриша записал на доске 100 чисел. Затем он увеличил каждое число на 1 и заметил, что произведение всех 100 чисел не изменилось. Он опять увеличил каждое число на 1, и снова произведение всех чисел не изменилось, и так далее. Всего Гриша повторил эту процедуру k раз, и все k раз произведение чисел не менялось. Найдите наибольшее возможное значение k.

ВверхВниз   Решение


На доске написано число 8n. У него вычисляется сумма цифр, у полученного числа вновь вычисляется сумма цифр, и так далее, до тех пор, пока не получится однозначное число. Что это за число, если n = 1989?

ВверхВниз   Решение


Внутри данного треугольника ABC найдите такую точку O, что площади треугольников BOL, COM и AON равны (точки L, M и N лежат на сторонах AB, BC и CA, причем  OL || BC, OM || AC и  ON || AB; рис.).


ВверхВниз   Решение


(Та же задача, что и 122, только может быть введено до 100000 чисел)

Вводятся числа от 1 до 9 до тех пор,
пока не будет введен 0. Всего будет введено не более 100000 чисел

Посчитать количество единиц в этой последовательности,
количество двоек, количество троек и так далее (в выходном
файле всегда должно быть 9 чисел).


Пример входного файла
1 1 4 1 5 8 6 3 5 1 0

Пример выходного файла:
4 0 1 1 2 1 0 1 0

ВверхВниз   Решение


Докажите, что площадь выпуклого четырёхугольника ABCD не превосходит $ {\frac{1}{2}}$(AB . BC + AD . DC).

ВверхВниз   Решение


Заменим в произведении 100· 101·102·...·200 все числа на 150. Увеличится или уменьшится произведение? Тот же вопрос для суммы.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 121]      



Задача 88293

Темы:   [ Произведения и факториалы ]
[ Неравенство Коши ]
[ Арифметическая прогрессия ]
Сложность: 3
Классы: 7,8,9

Заменим в произведении 100· 101·102·...·200 все числа на 150. Увеличится или уменьшится произведение? Тот же вопрос для суммы.

Прислать комментарий     Решение

Задача 88316

Темы:   [ Произведения и факториалы ]
[ Числовые неравенства. Сравнения чисел. ]
[ Неравенство Коши ]
Сложность: 3
Классы: 7,8

Что больше 200! или 100200?

Прислать комментарий     Решение

Задача 97788

Темы:   [ Произведения и факториалы ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Доказать, что уравнение  mn! = k!  имеет бесконечно много таких решений, что m, n и k – натуральные числа, большие единицы.

Прислать комментарий     Решение

Задача 97917

Темы:   [ Произведения и факториалы ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 8,9

Через n!! обозначается произведение  n(n – 2)(n – 4)...  до единицы (или до двойки): например,  8!! = 8·6·4·2;  9!! = 9·7·5·3·1.
Докажите, что  1985!! + 1986!!  делится на 1987.

Прислать комментарий     Решение

Задача 116924

Темы:   [ Произведения и факториалы ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

На какую наибольшую степень тройки делится произведение 3·33·333·...·3333333333 ?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 121]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .