ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Каждая из двух равных окружностей ω1 и ω2 проходит через центр другой. Треугольник ABC вписан в ω1, а прямые AC, BC касаются ω2.
Докажите, что  cos∠A + cos∠B = 1.

Вниз   Решение


Автор: Фольклор

Существует ли степень двойки, из которой перестановкой цифр можно получить другую степень двойки?

ВверхВниз   Решение


Существуют ли нецелые числа x и y, для которых  {x}{y} = {x + y}?

ВверхВниз   Решение


Диагонали четырёхугольника ABCD пересекаются в точке O.
Докажите, что произведение площадей треугольников AOB и COD равно произведению площадей треугольников BOC и DOA.

ВверхВниз   Решение


Автор: Кадыров К.

Постройте треугольник по точке Нагеля, вершине $B$ и основанию высоты, проведенной из этой вершины.

ВверхВниз   Решение


Даны точки M(2;-5;0) , N(3;0;4) , K(-2;2;0) и L(3;2;1) . Найдите острый угол между плоскостями MNK и NKL .

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 10]      



Задача 87170

Темы:   [ Метод координат в пространстве ]
[ Параметрические уравнения прямой ]
[ Уравнение плоскости ]
Сложность: 3
Классы: 8,9

Составьте параметрические уравнения прямой, проходящей через точку M(-2;0;3) перпендикулярно плоскости, проходящей через точки A(-3;0;1) , P(-1;2;5) и Q(3;-4;1) .
Прислать комментарий     Решение


Задача 87172

Темы:   [ Метод координат в пространстве ]
[ Параметрические уравнения прямой ]
Сложность: 3
Классы: 8,9

Составьте параметрические уравнения прямой пересечения плоскостей 2x - y - 3z + 5 = 0 и x + y - 2 = 0 .
Прислать комментарий     Решение


Задача 87192

Темы:   [ Метод координат в пространстве ]
[ Параметрические уравнения прямой ]
Сложность: 3
Классы: 10,11

Даны точки M(2;-5;0) , N(3;0;4) , K(-2;2;0) и L(3;2;1) . Найдите острый угол между плоскостями MNK и NKL .
Прислать комментарий     Решение


Задача 87193

Темы:   [ Метод координат в пространстве ]
[ Параметрические уравнения прямой ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 10,11

Даны точки M(2;-5;0) , N(3;0;4) , K(-2;2;0) и L(3;2;1) . Найдите угол между прямой MN и плоскостью NKL .
Прислать комментарий     Решение


Задача 87201

Темы:   [ Метод координат в пространстве ]
[ Параметрические уравнения прямой ]
Сложность: 3
Классы: 10,11

Даны точки A(-3;0;1) и D(1;3;2) . Составьте параметрические уравнения прямой AD .
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .