ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Найдите объём прямой призмы, основанием которой служит прямоугольный треугольник с острым углом α , если боковое ребро призмы равно l и образует с диагональю большей боковой грани угол β .

Вниз   Решение


Докажите, что для любых целых чисел p и q  (q ≠ 0),  справедливо неравенство  

ВверхВниз   Решение


При каких n можно оклеить в один слой поверхность клетчатого куба n×n×n бумажными прямоугольниками 1×2 так, чтобы каждый прямоугольник граничил по отрезкам сторон ровно с пятью другими?

ВверхВниз   Решение


Экспонентой y = ex называется такая функция, для которой выполнены условия y'(x) = y(x) и y(0) = 1. Какая последовательность {an} будет обладать аналогичными свойствами, если производную заменить на разностный оператор $ \Delta$?

ВверхВниз   Решение


Ребро куба ABCDA1B1C1D1 равно 1. На продолжении ребра AD за точку D выбрана точка M так, что AM = 2 . Точка E – середина ребра A1B1 , точка F – середина ребра DD1 . Какое наибольшее значение может принимать отношение , где точка P лежит на отрезке AE , а точка Q – на отрезке СF ?

ВверхВниз   Решение


Существует ли такое натуральное n, что  

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 95]      



Задача 61013

 [Теорема о рациональных корнях многочлена]
Темы:   [ Целочисленные и целозначные многочлены ]
[ Рациональные и иррациональные числа ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

Докажите, что если  (p, q) = 1  и  p/q  – рациональный корень многочлена  P(x) = anxn + ... + a1x + a0  с целыми коэффициентами, то
  а)  a0 делится на p;
  б)  an делится на q.

Прислать комментарий     Решение

Задача 65555

Темы:   [ Треугольники (прочее) ]
[ Рациональные и иррациональные числа ]
[ Замечательные точки и линии в треугольнике (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10,11

Назовём треугольник рациональным, если все его углы измеряются рациональным числом градусов. Назовём точку внутри треугольника рациональной, если при соединении её отрезками с вершинами мы получим три рациональных треугольника. Докажите, что внутри любого остроугольного рационального треугольника найдутся как минимум три различные рациональные точки.

Прислать комментарий     Решение

Задача 65611

Темы:   [ Формулы сокращенного умножения (прочее) ]
[ Рациональные и иррациональные числа ]
Сложность: 3+
Классы: 9,10,11

Существует ли такое натуральное n, что  

Прислать комментарий     Решение

Задача 65704

Темы:   [ Исследование квадратного трехчлена ]
[ Рациональные и иррациональные числа ]
Сложность: 3+
Классы: 10,11

Автор: Жуков Г.

Квадратный трёхчлен  f(x) = ax² + bx + c,  не имеющий корней, таков, что коэффициент b рационален, а среди чисел c и f(c) ровно одно иррационально.
Может ли дискриминант трёхчлена  f(x) быть рациональным?

Прислать комментарий     Решение

Задача 97865

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Рациональные и иррациональные числа ]
Сложность: 3+
Классы: 9,10,11

Автор: Варге И.

а) Привести пример такого положительного a, что  {a} + {1/a} = 1.
б) Может ли такое a быть рациональным числом?

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 95]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .