ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Вневписанная окружность, соответствующая вершине A прямоугольного треугольника ABC  (∠B = 90°),  касается продолжений сторон AB, AC в точках A1, A2 соответственно; аналогично определим точки C1, C2. Докажите, что перпендикуляры, опущенные из точек A, B, C на прямые C1C2, A1C1, A1A2 соответственно, пересекаются в одной точке.

Вниз   Решение


На прямой лежат точки X, Y, Z (именно в таком порядке). Треугольники XAB, YBC, ZCD – правильные, причём вершины первого и третьего ориентированы против часовой стрелки, а второго по часовой стрелке. Докажите, что прямые AC, BD и XY пересекаются в одной точке.

ВверхВниз   Решение


Около треугольника ABC описали окружность. A1 – точка пересечения с нею прямой, параллельной BC и проходящей через A. Точки B1 и C1 определяются аналогично. Из точек A1, B1, C1 опустили перпендикуляры на BC, CA, AB соответственно. Докажите, что эти три перпендикуляра пересекаются в одной точке.

ВверхВниз   Решение


Найдите объём правильной четырёхугольной пирамиды с высотой h и радиусом r вписанной сферы.

ВверхВниз   Решение


Внутри треугольника ABC взята произвольная точка O и построены точки A1, B1 и C1, симметричные точке O относительно середин сторон BC, CA и AB. Докажите, что треугольники ABC и A1B1C1 равны, а прямые AA1, BB1 и CC1 пересекаются в одной точке.

ВверхВниз   Решение


На гипотенузе AC прямоугольного треугольника ABC отметили точку такую C1, что  BC = CC1.  Затем на катете AB отметили такую точку C2, что
AC2 = AC1;  аналогично определяется точка A2. Найдите угол AMC, где M – середина отрезка A2C2.

ВверхВниз   Решение


Даны N прямоугольных треугольников. У каждого выбрали по одному катету и нашли сумму их длин, затем нашли сумму длин оставшихся катетов и, наконец, нашли сумму длин всех гипотенуз. Оказалось, что три найденных числа являются длинами сторон некоторого прямоугольного треугольника. Докажите, что у всех исходных треугольников одно и то же отношение большего катета к меньшему, если
  а)  N = 2;
  б)  N – любое натуральное число, большее 1.

Вверх   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 113]      



Задача 64742

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Гомотетия помогает решить задачу ]
[ Теорема Паскаля ]
[ Формула Эйлера ]
[ Длины сторон, высот, медиан и биссектрис ]
Сложность: 4-
Классы: 9,10,11

Пусть O, I – центры описанной и вписанной окружностей прямоугольного треугольника; R, r – радиусы этих окружностей; J – точка, симметричная вершине прямого угла относительно I. Найдите OJ.

Прислать комментарий     Решение

Задача 64841

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Подобные треугольники (прочее) ]
Сложность: 4-
Классы: 8,9,10

Даны N прямоугольных треугольников. У каждого выбрали по одному катету и нашли сумму их длин, затем нашли сумму длин оставшихся катетов и, наконец, нашли сумму длин всех гипотенуз. Оказалось, что три найденных числа являются длинами сторон некоторого прямоугольного треугольника. Докажите, что у всех исходных треугольников одно и то же отношение большего катета к меньшему, если
  а)  N = 2;
  б)  N – любое натуральное число, большее 1.

Прислать комментарий     Решение

Задача 64844

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Подобные треугольники (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Даны N прямоугольных треугольников  (N > 1).  У каждого выбрали по одному катету и нашли сумму их длин, затем нашли сумму длин оставшихся катетов и, наконец, нашли сумму длин всех гипотенуз. Оказалось, что три найденных числа являются длинами сторон некоторого прямоугольного треугольника. Докажите, что все исходные треугольники подобны.

Прислать комментарий     Решение

Задача 64850

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Биссектриса угла (ГМТ) ]
[ Поворот помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Внутри прямоугольного треугольника построили две равные окружности так, что первая касается одного из катетов и гипотенузы, вторая касается другого катета и гипотенузы, а ещё эти окружности касаются друг друга. Пусть M и N – точки касания окружностей с гипотенузой. Докажите, что середина отрезка MN лежит на биссектрисе прямого угла треугольника.

Прислать комментарий     Решение

Задача 64908

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Симметрия помогает решить задачу ]
[ Композиции симметрий ]
[ Углы между биссектрисами ]
Сложность: 4-
Классы: 8,9

На гипотенузе AC прямоугольного треугольника ABC отметили точку такую C1, что  BC = CC1.  Затем на катете AB отметили такую точку C2, что
AC2 = AC1;  аналогично определяется точка A2. Найдите угол AMC, где M – середина отрезка A2C2.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 113]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .