|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Ссылки по теме:
Статья "Квадратный трехчлен" (Болибрух А., Уроев В.,Шабунин М.) Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Из точки M, расположенной вне окружности на расстоянии Многочлен $P(x)=x^3+ax^2+bx+c$ имеет три различных действительных корня, наибольший из которых равен сумме двух других. Докажите, что $c>ab$. На доске написаны 10 единиц и 10 двоек. За ход разрешается стереть две любые цифры и, если они были одинаковыми, написать двойку, а если разными – единицу. Если последняя оставшаяся на доске цифра – единица, то выиграл первый игрок, если двойка – то второй. Фили и Кили играют в шахматы. Кроме шахматной доски у них есть одна ладья, которую они поставили в правый нижний угол, и делают ей ходы по очереди, причем ходить разрешается только вверх или влево (на любое количество клеток). Кто не может сделать хода, тот проиграл. Кили ходит первым. Кто выиграет при правильной игре? Имеется три кучки камней: в первой – 10, во второй – 15, в третьей – 20. За ход разрешается разбить любую кучку на две меньшие. Проигрывает тот, кто не сможет сделать ход. Кто выиграет? Докажите, что числа wk (k = 0, ..., n – 1), являющиеся корнями уравнения wn = z, при любом z ≠ 0 располагаются в вершинах правильного n-угольника. Как расставить скобки в выражении 22...2, чтобы оно было максимальным? Докажите, что квадратные корни из комплексного числа z = a + ib находятся среди чисел w = ±
Как нужно выбрать знак перед вторым слагаемым в скобке, чтобы получить два нужных корня, а не сопряженные к ним числа? В одной американской фирме каждый служащий является либо демократом, либо республиканцем. После того как один из республиканцев решил стать демократом, тех и других в фирме стало поровну. Затем ещё три республиканца решили стать демократами, и тогда демократов стало вдвое больше чем республиканцев. Сколько служащих в этой фирме? Решите уравнение: x(x + 1) = 2014·2015. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 266]
Определить отношение двух чисел, если отношение их среднего арифметического к среднему геометрическому равно 25 : 24.
Верно ли, что если b > a + c > 0, то квадратное уравнение ax² + bx + c = 0 имеет два корня?
Решите уравнение: x(x + 1) = 2014·2015.
Найдите все такие функции f(x), что f(2x + 1) = 4x² + 14x + 7.
Известно, что разность кубов корней квадратного уравнения ax² + bx + c = 0 равна 2011. Сколько корней имеет уравнение ax² + 2bx + 4c = 0?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 266] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|