|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Попробуйте прочесть слово, изображённое на рис. 1, пользуясь ключом (см. рис. 2). Можно ли поставить на плоскости 100 точек (сначала первую, потом
вторую и так далее до сотой) так, чтобы никакие три точки не лежали на одной
прямой и чтобы в любой момент фигура, состоящая из уже поставленных точек,
имела ось симметрии? У Васи есть неограниченный запас брусков 1×1×3 и уголков из трёх кубиков 1×1×1. Вася целиком заполнил ими коробку m×n×k, где $m, n, k$ – целые числа, большие 1. Докажите, что можно было обойтись лишь уголками. Найдите min |3 + 2i – z| при |z| ≤ 1. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 47]
Пусть z1 и z2 – фиксированные точки
комплексной плоскости. Дайте геометрическое описание множеств всех точек z, удовлетворяющих соотношениям:
Дайте геометрическую интерпретацию следующих неравенств:
Найдите min |3 + 2i – z| при |z| ≤ 1.
Запишите с помощью неравенств следующие множества точек на комплексной плоскости:
z2, z1, z0 лежат на одной прямой тогда и только тогда, когда
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 47] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|