|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В прямоугольнике площадью 5 кв. единиц расположены девять прямоугольников, площадь каждого из которых равна единице. Докажите, что площадь общей части некоторых двух прямоугольников больше или равна 1/9. На окружности отмечено 100 точек. Может ли при этом оказаться ровно 1000 прямоугольных треугольников, все вершины которых — отмеченные точки? |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 47]
Постройте образ квадрата с вершинами A(0, 0), B(0, 2), C(2, 2), D(2, 0) при следующих преобразованиях:
Куда переходит полоса 2 < Re z < 3 при отображениях:
Докажите, что произвольное дробно-линейное отображение вида
Докажите, что уравнение Azz + Bz – B z + C = 0 при отображениях w = z + u и w = R/z переходит в уравнение такого же вида. Получите из этого круговое свойство дробно-линейных отображений (см. задачу 61183).
Докажите, что cтепень точки w относительно окружности Azz + Bz – B z + C = 0 равна
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 47] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|