ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На завтрак группа из 5 слонов и 7 бегемотов съела 11 круглых и 20 кубических арбузов, а группа из 8 слонов и 4 бегемотов – 20 круглых и 8 кубических арбузов. Все слоны съели поровну (одно и то же целое число) арбузов. И все бегемоты съели поровну арбузов. Но один вид животных ест и круглые, и кубические арбузы, а другой вид привередливый и ест арбузы только одной из форм. Определите, какой вид (слоны или бегемоты) привередлив и какие арбузы он предпочитает.

Вниз   Решение


Биссектриса угла B и биссектриса внешнего угла D прямоугольника ABCD пересекают сторону AD и прямую AB в точках M и K соответственно.
Докажите, что отрезок MK равен и перпендикулярен диагонали прямоугольника.

ВверхВниз   Решение


У Аладдина есть несколько одинаковых слитков золота, и иногда он просит джинна увеличить их количество. Джинн добавляет тысячу таких же слитков, но после этого берёт за услугу ровно половину от получившейся общей массы золота. Мог ли Аладдин оказаться в выигрыше после десяти таких просьб, если ни один слиток не пришлось распиливать?

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 47]      



Задача 61070

Тема:   [ Геометрия комплексной плоскости ]
Сложность: 4
Классы: 9,10,11

Какие множества на комплексной плоскости описываются следующими условиями:
  а)  |z| ≤ 1;   б)  |z – i| ≤ 1;   в)  |z| = z;   г)     д)  arg = π/4;   е)  Re z2 ≤ 1;   ж)  | iz + 1| = 3;   з)  |z – i| + |z + i| = 2;   и)   Im 1/z < –½   к)  π/6 < arg (z – i) < π/4.

Прислать комментарий     Решение

Задача 61152

Тема:   [ Преобразования комплексной плоскости (прочее) ]
Сложность: 4
Классы: 9,10,11

<з>Выразите в виде  w = f(z)  следующие геометрические преобразования:
  а)     б)     в)     г)  ;   д)     е)    
Здесь использованы следующие обозначения:
– гомотетия с центром в точке A и коэффициентом k;
Tz – параллельный перенос на вектор Oz;
– поворот относительно точки A на угол φ;
точка  O = (0, 0)  – начало координат.

Прислать комментарий     Решение

Задача 61157

Тема:   [ Преобразования комплексной плоскости (прочее) ]
Сложность: 4
Классы: 10,11

Найдите
а) образ окружности  |z – a – bi| =   при отображении w = 1/z;
б) образ окружности  |z – a| = R  при отображении  w = .

Прислать комментарий     Решение

Задача 61183

 [Круговое свойство дробно-линейных отображений]
Тема:   [ Дробно-линейные преобразования ]
Сложность: 4
Классы: 10,11

Докажите, что дробно-линейное отображение переводит каждую окружность или прямую линию снова в окружность или прямую линию.

Прислать комментарий     Решение

Задача 61089

Темы:   [ Алгебраические уравнения в C. Извлечение корня ]
[ Геометрия комплексной плоскости ]
[ Правильные многоугольники ]
Сложность: 2
Классы: 9,10,11

Докажите, что числа wk  (k = 0, ..., n – 1),  являющиеся корнями уравнения  wn = z,  при любом  z ≠ 0  располагаются в вершинах правильного n-угольника.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 47]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .