|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Ссылки по теме:
Статья "Очерк о цепных дробях": часть 1 (Нестеренко Ю., Никишин Е.) Статья "Очерк о цепных дробях": часть 2 (Нестеренко Ю., Никишин Е.) Материалы по этой теме: |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Противоположные стороны выпуклого шестиугольника параллельны. Hазовём высотой такого шестиугольника отрезок с концами на прямых, содержащих противолежащие стороны и перпендикулярный им. Докажите, что вокруг этого шестиугольника можно описать окружность тогда и только тогда, когда его высоты можно параллельно перенести так, чтобы они образовали треугольник. Числа в вершинах В неориентированном графе без кратных ребер и петель расставить в вершинах числа так, чтобы если вершины соединены ребром, то числа имели общий делитель, а если нет - то нет. Входные данные. В файле INPUT.TXT записано число N (0<N<7) - количество вершин в графе. Затем записана матрица смежности. Выходные данные. В файл OUTPUT.TXT вывести N натуральных чисел из диапазона Longint, которые вы предлагаете приписать вершинам. Пример файла INPUT.TXT 3 0 1 1 1 0 0 1 0 0 Пример файла OUTPUT.TXT 6 2 3 Точка M, лежащая вне круга с диаметром AB, соединена с точками A и B. Отрезки MA и MB пересекают окружность в точках C и D соответственно. Площадь круга, вписанного в треугольник AMB, в четыре раза больше, чем площадь круга, вписанного в треугольник CMD. Найдите углы треугольника AMB, если известно, что один из них в два раза больше другого. На окружности по разные стороны от диаметра AC расположены точки B и D. Известно, что AB = Можно ли нарисовать на плоскости четыре красных и четыре чёрных точки так, чтобы для каждой тройки точек одного цвета нашлась такая точка другого цвета, что эти четыре точки являются вершинами параллелограмма? Докажите, что для любых целых чисел p и q (q ≠ 0), справедливо неравенство |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 40]
Докажите, что для любых целых чисел p и q (q ≠ 0), справедливо неравенство
Решить в натуральных числах уравнение:
Найдите рациональное число, которое отличается от числа
Докажите, что при k ≥ 1 выполняется равенство:
Прибор для сравнения чисел logab и logcd (a, b, c, d > 1) работает по правилам: если b > a и d > c, то он переходит к сравнению чисел logab/a и logcd/c
если b < a и d < c, то он переходит к сравнению чисел logdc и logba; если (b − a)(d − c) ≤ 0, то он выдаёт ответ.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 40] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|