Версия для печати
Убрать все задачи
На плоскости даны треугольник ABC и 10 прямых, среди которых нет параллельных друг другу. Оказалось, что каждая из прямых равноудалена от каких-то двух вершин треугольника ABC. Докажите, что хотя бы три из этих прямых пересекаются в одной точке.

Решение
В трапеции ABCD углы A и D прямые, AB = 1, CD = 4, AD = 5. На стороне AD взята точка M так, что ∠CMD = 2∠BMA.
В каком отношении точка M делит сторону AD?


Решение
Окружности
S1 и
S2 радиуса 1 касаются в точке
A;
центр
O окружности
S радиуса 2 принадлежит
S1.
Окружность
S1 касается
S в точке
B. Докажите, что прямая
AB проходит через точку пересечения окружностей
S2 и
S.


Решение
Отрезок
KL проходит через точку пересечения диагоналей
четырехугольника
ABCD, а концы его лежат на сторонах
AB и
CD.
Докажите, что длина отрезка
KL не превосходит длины одной из
диагоналей.

Решение