ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Какое наибольшее число пешек можно поставить на шахматную доску (не более одной пешки на каждое поле), если:
  1) на поле e4 пешку ставить нельзя;
  2) никакие две пешки не могут стоять на полях, симметричных относительно поля e4?

Вниз   Решение


На каждой из двенадцати диагоналей граней куба выбирается произвольная точка. Определяется центр тяжести этих двенадцати точек.
Найдите геометрическое место всех таких центров тяжести.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 40]      



Задача 57374

Тема:   [ Четырехугольник (неравенства) ]
Сложность: 4
Классы: 8,9

Пусть M и N — середины сторон BC и CD выпуклого четырехугольника ABCD. Докажите, что  SABCD < 4SAMN.
Прислать комментарий     Решение


Задача 57376

Тема:   [ Четырехугольник (неравенства) ]
Сложность: 4
Классы: 8,9

Диагонали делят выпуклый четырехугольник ABCD на четыре треугольника. Пусть P — периметр четырехугольника ABCDQ — периметр четырехугольника, образованного центрами вписанных окружностей полученных треугольников. Докажите, что  PQ > 4SABCD.
Прислать комментарий     Решение


Задача 57377

Тема:   [ Четырехугольник (неравенства) ]
Сложность: 4
Классы: 8,9

Докажите, что расстояние от одной из вершин выпуклого четырехугольника до противоположной диагонали не превосходит половины этой диагонали.
Прислать комментарий     Решение


Задача 64912

Темы:   [ Четырехугольник (неравенства) ]
[ Против большей стороны лежит больший угол ]
[ Неравенство треугольника (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Малые шевеления ]
Сложность: 4
Классы: 8,9,10,11

В выпуклом четырёхугольнике все стороны и все углы попарно различны.
  а) Может ли наибольший угол примыкать к наибольшей стороне, и при этом наименьший – к наименьшей?
  б) Может ли наибольший угол не примыкать к наименьшей стороне, и при этом наименьший не примыкать к наибольшей?

Прислать комментарий     Решение

Задача 65095

Темы:   [ Четырехугольник (неравенства) ]
[ Признаки и свойства параллелограмма ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 4
Классы: 8,9

Внутри выпуклого четырёхугольника ABCD, в котором  AB = CD,  выбрана точка P таким образом, что сумма углов PBA и PCD равна 180°.
Докажите, что  PB + PC < AD.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 40]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .