|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Квадрат Какую фигуру образует множество всех вершин равнобедренных треугольников, имеющих общее основание?
Внутри выпуклого четырёхугольника расположены четыре окружности, каждая из которых касается двух соседних сторон четырёхугольника и двух окружностей (внешним образом). Известно, что в четырёхугольник можно вписать окружность. Докажите, что по крайней мере две из данных окружностей равны.
При каком натуральном K величина a, b и c - длины сторон произвольного треугольника. Докажите, что |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]
a(b - c)2 + b(c - a)2 + c(a - b)2 + 4abc > a3 + b3 + c3.
Докажите, что a²pq + b²qr + c²rp ≤ 0, если a, b, c – стороны треугольника; а p, q, r – любые числа, удовлетворяющие условию p + q + r = 0.
a, b, c – стороны треугольника. Докажите неравенство
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|