|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что точки, симметричные точке пересечения высот (ортоцентру) треугольника ABC относительно прямых, содержащих его стороны, лежат на описанной окружности этого треугольника. Биссектриса внешнего угла при вершине C треугольника ABC пересекает описанную окружность в точке D. Докажите, что AD = BD. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 2974]
а) радиус вписанной окружности треугольника равен (a + b - c)/2; б) радиус окружности, касающейся гипотенузы и продолжений катетов, равен (a + b + c)/2.
В треугольник ABC со сторонами AB = 5, BC = 7, CA = 10 вписана окружность. Прямая, пересекающая стороны AB и BC в точках M и K, касается этой окружности. Найдите периметр треугольника MBK.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 2974] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|