ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Угол при вершине D трапеции ABCD с основаниями AD и BC равен 60o. Найдите диагонали трапеции, если AD = 10, BC = 3 и CD = 4.

Вниз   Решение


Найдите основание равнобедренного треугольника, если его боковая сторона равна a, а высота, опущенная на основание, равна отрезку, соединяющему середину основания с серединой боковой стороны.

ВверхВниз   Решение


Гриб называется плохим, если в нём не менее 10 червей. В лукошке 90 плохих и 10 хороших грибов. Могут ли все грибы стать хорошими после того, как некоторые черви переползут из плохих грибов в хорошие?

ВверхВниз   Решение


На высотах BB1 и CC1 треугольника ABC взяты точки B2 и C2 так, что   ∠AB2C = ∠AC2B = 90°.  Докажите, что  AB2 = AC2.

ВверхВниз   Решение


Докажите, что площадь треугольника, стороны которого равны медианам треугольника площади S, равна 3S/4.

ВверхВниз   Решение


Все считали, что Дракон был однооким, двуухим, треххвостым, четырехлапым и пятииглым. На самом деле, только четыре из этих определений выстраиваются в определенную закономерность, а одно — лишнее. Какое?

ВверхВниз   Решение


Шестиугольник ABCDEF вписан в окружность радиуса R с центром O, причём  AB = CD = EF = R.  Докажите, что точки попарного пересечения описанных окружностей треугольников BOC, DOE и FOA, отличные от точки O, являются вершинами правильного треугольника со стороной R.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 88]      



Задача 55141

Темы:   [ Шестиугольники ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 4
Классы: 8,9

Противоположные стороны шестиугольника ABCDEF попарно параллельны. Докажите, что треугольники ACE и BDF равновелики.

Прислать комментарий     Решение


Задача 52855

Темы:   [ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
Сложность: 4+
Классы: 8,9

В шестиугольнике ABCDEF известно, что AB || DE, BC || EF, CD || FA и AD = BE = CF. Докажите, что около этого шестиугольника можно описать окружность.

Прислать комментарий     Решение


Задача 56500

Темы:   [ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
[ Правильный (равносторонний) треугольник ]
[ Вспомогательные равные треугольники ]
Сложность: 4+
Классы: 8,9

Шестиугольник ABCDEF вписан в окружность радиуса R с центром O, причём  AB = CD = EF = R.  Докажите, что точки попарного пересечения описанных окружностей треугольников BOC, DOE и FOA, отличные от точки O, являются вершинами правильного треугольника со стороной R.

Прислать комментарий     Решение

Задача 66245

Темы:   [ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
[ Три точки, лежащие на одной прямой ]
[ Симметрия помогает решить задачу ]
[ Применение проективных преобразований, сохраняющих окружность ]
Сложность: 4+
Классы: 9,10,11

В окружность вписан шестиугольник ABCDEF.  K, L, M, N – точки пересечения пар прямых AB и CD, AC и BD, AF и DE, AE и DF.
Докажите, что если три из этих точек лежат на одной прямой, то и четвёртая точка лежит на этой прямой.

Прислать комментарий     Решение

Задача 116403

Темы:   [ Шестиугольники ]
[ Площадь треугольника (через высоту и основание) ]
[ Перегруппировка площадей ]
Сложность: 4+
Классы: 10,11

Автор: Белухов Н.

Даны треугольник XYZ и выпуклый шестиугольник ABCDEF. Стороны AB, CD и EF параллельны и равны соответственно сторонам XY, YZ и ZX. Докажите, что площадь треугольника с вершинами в серединах сторон BC, DE и FA не меньше площади треугольника XYZ.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 88]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .