|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Внутри треугольника ABC взята такая точка D, что BD = CD, ∠BDC = 120°. Вне треугольника ABC взята такая точка E, что AE = CE, ∠AEC = 60° и точки B и E находятся в разных полуплоскостях относительно AC. Докажите, что ∠AFD = 90°, где F – середина отрезка BE. В треугольнике ABC проведён серединный перпендикуляр к стороне AB до пересечения с другой стороной в некоторой точке C'. Аналогично построены точки A' и B'. Для каких исходных треугольников треугольник A'B'C' будет равносторонним? а) В треугольнике ABC проведена биссектриса BD внутреннего или внешнего угла. Докажите, что AD : DC = AB : BC. б) Докажите, что центр O вписанной окружности треугольника ABC делит биссектрису AA1 в отношении AO : OA1 = (b + c) : a, где a, b, c – длины сторон треугольника. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1443]
Докажите, что три средние линии разбивают треугольник на четыре равных треугольника.
Дан треугольник с периметром, равным 24. Найдите периметр треугольника с вершинами в серединах сторон данного.
Средняя линия, параллельная стороне AC треугольника ABC, равна половине стороны AB. Докажите, что треугольник ABC – равнобедренный.
Докажите, что середины сторон произвольного четырёхугольника – вершины параллелограмма.
а) В треугольнике ABC проведена биссектриса BD внутреннего или внешнего угла. Докажите, что AD : DC = AB : BC. б) Докажите, что центр O вписанной окружности треугольника ABC делит биссектрису AA1 в отношении AO : OA1 = (b + c) : a, где a, b, c – длины сторон треугольника.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1443] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|