ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

а) В каждой вершине куба написано число 1 или число 0. На каждой грани куба написана сумма четырёх чисел, написанных в вершинах этой грани. Может ли оказаться, что все числа, написанные на гранях, различны?
б) Тот же вопрос, если в вершинах написаны числа 1 или –1.

Вниз   Решение


В классе 25 учеников. Известно, что у любых двух девочек класса количество друзей-мальчиков из этого класса не совпадает. Какое наибольшее количество девочек может быть в этом классе?

ВверхВниз   Решение


Автор: Фольклор

10 друзей послали друг другу праздничные открытки, так что каждый послал пять открыток.
Докажите, что найдутся двое, которые послали открытки друг другу.

ВверхВниз   Решение


Несколько Совершенно Секретных Объектов соединены подземной железной дорогой таким образом, что каждый Объект напрямую соединён не более чем с тремя другими и от каждого Объекта можно добраться под землей до любого другого, сделав не более одной пересадки. Каково максимальное число Совершенно Секретных Объектов?

ВверхВниз   Решение


Основание каждой высоты треугольника проектируется на стороны треугольника. Докажите, что шесть полученных точек лежат на одной окружности.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 60]      



Задача 55460

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9,10

Основание каждой высоты треугольника проектируется на стороны треугольника. Докажите, что шесть полученных точек лежат на одной окружности.

Прислать комментарий     Решение

Задача 65190

Темы:   [ Ортоцентр и ортотреугольник ]
[ Свойства биссектрис, конкуррентность ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

Автор: Якубов А.

В остроугольном треугольнике ABC, в котором  ∠A = 45°,  проведены высоты AA1, BB1, CC1. Биссектриса угла BAA1 пересекает прямую B1A1 в точке D, а биссектриса угла CAA1 пересекает прямую C1A1 в точке E. Найдите угол между прямыми BD и CE.

Прислать комментарий     Решение

Задача 65374

Темы:   [ Ортоцентр и ортотреугольник ]
[ Точка Лемуана ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Симметрия помогает решить задачу ]
Сложность: 4+
Классы: 9,10,11

Автор: Креков Д.

В остроугольном неравнобедренном треугольнике ABC высоты AA' и BB' пересекаются в точке H, а медианы треугольника AHB пересекаются в точке M. Прямая CM делит отрезок A'B' пополам. Найдите угол C.

Прислать комментарий     Решение

Задача 110753

Темы:   [ Ортоцентр и ортотреугольник ]
[ Три прямые, пересекающиеся в одной точке ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Симметрия помогает решить задачу ]
[ Вписанные и описанные окружности ]
Сложность: 4+
Классы: 8,9,10

Точки A', B', C' – основания высот остроугольного треугольника ABC. Окружность с центром B и радиусом BB' пересекает прямую A'C' в точках K и L (точки K и A лежат по одну сторону от BB'). Докажите, что точка пересечения прямых AK и CL лежит на прямой BO, где O – центр описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 55240

Темы:   [ Неравенства с углами ]
[ Вспомогательные подобные треугольники ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 4+
Классы: 8,9

На плоскости даны прямая l и две точки P и Q, лежащие по одну сторону от неё. Найдите на прямой l такую точку M, для которой расстояние между основаниями высот треугольника PQM, опущенных на стороны PM и QM, наименьшее.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 60]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .