|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Две окружности радиуса R пересекаются в точках M и N. Пусть A и B — точки пересечения серединного перпендикуляра к отрезку MN с этими окружностями, лежащие по одну сторону от прямой MN. Докажите, что MN2 + AB2 = 4R2. Сторона AB параллелограмма ABCD равна 2, ∠A = 45°. Точки E и F расположены на диагонали BD, причём ∠AEB = ∠CFD = 90°, BF = 3/2 BE.
В треугольнике ABC высота AH равна h,
|
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 531]
В треугольнике ABC угол A равен α, AB = AC = b. Через вершину B и центр описанной окружности проведена прямая до пересечения с прямой AC в точке D. Найдите BD.
В треугольнике ABC высота AH равна h,
В прямоугольном треугольнике гипотенуза равна c, а острый угол
равен
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 531] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|