|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи а) a, b, c — длины сторон треугольника. Доказать, что a4 + b4 + c4 − 2(a2b2 + a2c2 + b2c2) + a2bc + b2ac + c2ab ≥ 0. б) Доказать, что a4 + b4 + c4 − 2(a2b2 + a2c2 + b2c2) + a2bc + b2ac + c2ab ≥ 0 для любых неотрицательных a, b, c. Точки A, B и C лежат на одной прямой (точка B расположена между точками A и C). Через точки A и B проводятся окружности, а через точку C — касательные к ним. Найдите геометрическое место точек касания.
|
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 111]
Даны точки A, B. Найдите геометрическое место таких точек C, что C, середины отрезков AC, BC и точка пересечения медиан треугольника ABC лежат на одной окружности.
Окружность с центром I лежит внутри окружности с центром O. Найдите геометрическое место центров описанных окружностей треугольников IAB, где AB – хорда большей окружности, касающаяся меньшей.
На данной окружности зафиксированы две точки A и B, а точка M пробегает всю окружность. Из середины K отрезка MB опускается перпендикуляр на прямую MA. Основание этого перпендикуляра обозначается через P. Найдите геометрическое место точек P.
Дан квадрат ABCD. Найдите геометрическое место точек M таких, что ∠AMB = ∠CMD.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 111] |
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|