|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Можно ли разбить какой-нибудь треугольник на 5 одинаковых треугольников? В треугольнике ABC из вершины C проведены биссектрисы внутреннего и внешнего углов. Первая биссектриса образует со стороной AB угол, равный 40°. Какой угол образует с продолжением стороны AB вторая биссектриса? Внутри треугольника ABC взята точка K. Известно, что
AK = 1, KC = |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 77]
Внутри треугольника ABC взята точка K. Известно, что
AK = 1, KC =
На плоскости проведены n > 2 прямых общего положения (то есть никакие две прямые не параллельны и никакие три не пересекаются в одной точке). Эти прямые разрезали плоскость на несколько частей. Какое
Внутри выпуклого четырёхугольника ABCD, в котором AB = CD, выбрана точка P таким образом, что сумма углов PBA и PCD равна 180°.
На сторонах произвольного треугольника ABC внешним образом построены равнобедренные треугольники AC1B, BA1C, CB1A с углами 2α, 2β и 2γ при вершинах A1, B1 и C1, причём α + β + γ = 180°. Докажите, что углы треугольника A1B1C1 равны α, β и γ.
На неравных сторонах AB и AC треугольника ABC внешним образом построены равнобедренные треугольники AC1B и AB1C с углом φ при вершине, O – точка серединного перпендикуляра к отрезку BC, равноудалённая от точек B1 и C1. Докажите, что ∠B1OC1 = 180° – φ.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 77] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|