|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В треугольнике ABC ∠A = 60°. Серединный перпендикуляр к отрезку AB пересекает прямую AC в точке C1. Серединный перпендикуляр к отрезку AC пересекает прямую AB в точке B1. Докажите, что прямая B1C1 касается вписанной окружности треугольника ABC. Боковое ребро правильной треугольной пирамиды наклонено к плоскости основания под углом 45o . Найдите сторону основания, если объём пирамиды равен 18. Основания трапеции равны a и b (a > b). Найдите длину отрезка, соединяющего середины диагоналей трапеции. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 107]
Средняя линия трапеции равна 10 и делит площадь трапеции в отношении 3:5. Найдите основания трапеции.
Основания трапеции равны a и b (a > b). Найдите длину отрезка, соединяющего середины диагоналей трапеции.
Найдите отношение оснований трапеции, если известно, что её средняя линия делится диагоналями на три равные части.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 107] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|