|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В треугольнике ABC известно, что AB < BC < AC, а один из углов вдвое меньше другого и втрое меньше третьего. Найдите угол при вершине A. Найдите наибольшее значение выражения x²y – y²x, если 0 ≤ x ≤ 1 и 0 ≤ y ≤ 1. Сторона основания правильной четырёхугольной пирамиды равна a . Боковая грань образует с плоскостью основания угол равный 45o . Найдите объём пирамиды. В круге радиуса r проведена хорда, равная a. Найдите площадь получившегося сегмента. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 75]
В круге радиуса r проведена хорда, равная a. Найдите площадь получившегося сегмента.
В круге с центром O проведена хорда AB. Вычислите площадь получившегося сегмента, если ∠AOB = α, а радиус круга равен r.
Даны две концентрические окружности. Хорда большей из них касается меньшей и имеет длину 2.
Каждая из трёх окружностей радиуса r касается двух других. Найдите площадь фигуры, расположенной вне окружностей и ограниченной их дугами, заключёнными между точками касания.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 75] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|