|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В треугольнике ABC на стороне AC взята точка D, причём
AD = 3, cos∠BDC = 13/20, а ∠B + ∠ADB = 180°. Пусть E, F, G – такие точки на сторонах соответственно AB, BC, CA треугольника ABC, для которых AE : EB = BF : FC = CG : GA = k : 1, где 0 < k < 1. Найдите отношение площади треугольника, образованного прямыми AF, BG и CE, к площади треугольника ABC. В прямоугольнике диагональ образует со стороной угол в 20o. На какие четыре части делится вершинами этого прямоугольника описанная около него окружность?
|
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 331]
Биссектриса угла B и биссектриса внешнего угла D прямоугольника
ABCD пересекают сторону AD и прямую AB в точках M и
K соответственно.
ABCD – прямоугольник, M – середина стороны BC. Известно, что прямые MA и MD взаимно перпендикулярны и что периметр прямоугольника ABCD равен 24. Найдите его стороны.
Найдите сторону квадрата, вписанного в окружность радиуса 8.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 331] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|