ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В остроугольном треугольнике ABC с углом A, равным  60o, высоты пересекаются в точке H.
а) Пусть M и N — точки пересечения серединных перпендикуляров к отрезкам BH и CH со сторонами AB и AC соответственно. Докажите, что точки M, N и H лежат на одной прямой.
б) Докажите, что на той же прямой лежит центр O описанной окружности.

Вниз   Решение


Пусть n – натуральное число. На  2n + 1  карточках написано по ненулевому целому числу; сумма всех чисел также ненулевая. Требуется этими карточками заменить звёздочки в выражении  *x2n + *x2n–1 + ... *x + *  так, чтобы полученный многочлен не имел целых корней. Всегда ли это можно сделать?

ВверхВниз   Решение


Существует ли такой квадратный трёхчлен  f(x) = ax² + bx + c  с целыми коэффициентами и a, не кратным 2014, что все числа  f(1),  f(2), ...,  f(2014) имеют различные остатки при делении на 2014?

ВверхВниз   Решение


На сфере радиуса 1 расположено n точек. Докажите, что сумма квадратов попарных расстояний между ними не больше n2.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]      



Задача 67520

Темы:   [ Стереометрия (прочее) ]
[ Скалярное произведение ]
Сложность: 4
Классы: 9,10,11

В трёхмерном координатном пространстве рассмотрим множество всех кубов с целочисленными координатами вершин. Докажите, что в этом множестве существует такое бесконечное подмножество $K$, что любые два разных куба из $K$ не имеют параллельных рёбер.
Прислать комментарий     Решение


Задача 35214

Тема:   [ Стереометрия (прочее) ]
Сложность: 4+
Классы: 10,11

На сфере радиуса 1 расположено n точек. Докажите, что сумма квадратов попарных расстояний между ними не больше n2.
Прислать комментарий     Решение


Задача 35220

Тема:   [ Стереометрия (прочее) ]
Сложность: 5-
Классы: 10,11

Кусок сыра имеет форму куба. В нем имеется несколько одинаковых непересекающихся сферических дыр. Докажите, что можно разрезать сыр на выпуклые многогранники так, чтобы внутри каждого из них находилась ровно одна дыра.
Прислать комментарий     Решение


Задача 35076

Темы:   [ Неравенство треугольника (прочее) ]
[ Стереометрия (прочее) ]
Сложность: 2+
Классы: 8,9,10

Докажите, что шесть ребер любого тетраэдра можно разбить на три пары (a,b), (c,d), (e,f) так, чтобы из отрезков длин a+b, c+d, e+f можно было составить треугольник.
Прислать комментарий     Решение


Задача 35456

Темы:   [ Необычные построения (прочее) ]
[ Стереометрия (прочее) ]
[ Трапеции (прочее) ]
Сложность: 3
Классы: 10,11

Даны шар и плоскость. На поверхности шара можно делать построения циркулем, а на плоскости – циркулем и линейкой.
Как на плоскости построить отрезок, равный радиусу шара?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .