ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

На сторонах треугольника ABC внешним образом построены треугольники ABC', AB'C и A'BC, причем сумма углов при вершинах A', B' и C' кратна  180o. Докажите, что описанные окружности построенных треугольников пересекаются в одной точке.

Вниз   Решение


В набор "Юный геометр" входит несколько плоских граней, из которых можно собрать выпуклый многогранник. Юный геометр Саша разделил эти грани на две кучки. Могло ли случиться, что из граней каждой кучки тоже можно собрать выпуклый многогранник?
(И в начале, и в конце каждая из граней набора должна являться гранью многогранника.)

ВверхВниз   Решение


В кабинете президента стоят 2004 телефона, любые два из которых соединены проводом одного из четырёх цветов. Известно, что провода всех четырёх цветов присутствуют. Всегда ли можно выбрать несколько телефонов так, чтобы среди соединяющих их проводов встречались провода ровно трех цветов?

ВверхВниз   Решение


Три плоскости разрезают параллелепипед на 8 шестигранников, все грани которых – четырёхугольники (каждая плоскость пересекает свои две пары противоположных граней параллелепипеда и не пересекает две оставшиеся грани). Известно, что вокруг одного из этих шестигранников можно описать сферу. Докажите, что и вокруг каждого из них можно описать сферу.

ВверхВниз   Решение


B равнобедренном треугольнике ABС на боковой стороне отмечена точка M так, что отрезок равен высоте треугольника, проведённой к этой стороне, а на боковой стороне AB отмечена точка K так, что угол KMС – прямой. Hайдите угол ACK.

ВверхВниз   Решение


Периметр выпуклого четырёхугольника равен 2004, одна из диагоналей равна 1001. Может ли вторая диагональ быть равна  а) 1;  б) 2;  в) 1001?

ВверхВниз   Решение


Основание прямоугольного параллелепипеда ABCDA1B1C1D1 – прямоугольник ABCD со сторонами AB=2 и BC=4 . Высота OO1 параллелепипеда равна 4 ( O и O1 – центры граней ABCD и A1B1C1D1 соответственно). Сфера радиуса 3 с центром на высоте OO1 касается плоскости основания. Найдите сумму квадратов расстояний от точки, принадлежащей сфере, до всех вершин параллелепипеда при условии, что она максимальна.

ВверхВниз   Решение


Известно, что первый, десятый и сотый члены геометрической прогрессии являются натуральными числами. Верно ли, что 99-ый член этой прогрессии также является натуральным числом?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 74]      



Задача 35281

Тема:   [ Геометрическая прогрессия ]
Сложность: 2+
Классы: 9,10

Найти сумму а) 1+11+111+...+111...1, где последнее число содержит n единиц; б)аналогичная задача, когда вместо единиц стоят пятерки.
Прислать комментарий     Решение


Задача 103968

Тема:   [ Геометрическая прогрессия ]
Сложность: 2+
Классы: 7,8,9

Когда Буратино отправился на занятия ВМШ, папа Карло пообещал ему заплатить за первую правильно решенную задачу одну копейку, за вторую - две копейки, за третью - четыре, и т.д. За месяц Буратино получил 655 руб 35 коп. Сколько задач он решил?
Прислать комментарий     Решение


Задача 35152

Темы:   [ Геометрическая прогрессия ]
[ Корни высших показателей (прочее) ]
Сложность: 3-
Классы: 8,9,10

Известно, что первый, десятый и сотый члены геометрической прогрессии являются натуральными числами. Верно ли, что 99-ый член этой прогрессии также является натуральным числом?
Прислать комментарий     Решение


Задача 102857

Тема:   [ Геометрическая прогрессия ]
Сложность: 3-
Классы: 7,8

Найти сумму 1 + 2002 + 20022 + ... + 2002n.
Прислать комментарий     Решение


Задача 35018

Тема:   [ Геометрическая прогрессия ]
Сложность: 3
Классы: 8,9

Найдите сумму 6+66+666+...+666..6, где в записи последнего числа присутствуют n шестерок.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 74]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .