ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На плоскости дано n$ \ge$3 точек, причем не все они лежат на одной прямой. Докажите, что существует окружность, проходящая через три из данных точек и не содержащая внутри ни одной из оставшихся точек.

Вниз   Решение


Секретная база окружена прозрачным извилистым забором в форме невыпуклого многоугольника, снаружи – болото. Через болото проложена прямая линия электропередач из 36 столбов, часть из которых стоит снаружи базы, а часть – внутри. (Линия электропередач не проходит через вершины забора.) Шпион обходит базу снаружи вдоль забора так, что забор всё время по правую руку от него. Каждый раз, оказавшись на линии электропередач, он считает, сколько всего столбов находится по левую руку от него (он их все видит). К моменту, когда шпион обошёл весь забор, он насчитал в сумме 2015 столбов. Сколько столбов находится внутри базы?

ВверхВниз   Решение


Назовем билет с номером от 000000 до 999999 отличным, если разность некоторых двух соседних цифр его номера равна 5.
Найдите число отличных билетов.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 74]      



Задача 60320

 [Золотая цепочка]
Темы:   [ Геометрическая прогрессия ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 9,10

   а) На постоялом дворе остановился путешественник, и хозяин согласился в качестве уплаты за проживание брать кольца золотой цепочки, которую тот носил на руке. Но при этом он поставил условие, чтобы оплата была ежедневной: каждый день хозяин должен был иметь на одно кольцо больше, чем в предыдущий. Замкнутая в кольцо цепочка содержала 11 колец, а путешественник собирался прожить ровно 11 дней, поэтому он согласился. Какое наименьшее число колец он должен распилить, чтобы иметь возможность платить хозяину?

   б) Из скольких колец должна состоять цепочка, чтобы путешественник мог прожить на постоялом дворе наибольшее число дней при условии, что он может распилить только n колец?

Прислать комментарий     Решение

Задача 65468

Темы:   [ Геометрическая прогрессия ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 10,11

Геометрическая прогрессия состоит из 37 натуральных чисел. Первый и последний члены прогрессии взаимно просты.
Докажите, что 19-й член прогрессии является 18-й степенью натурального числа.

Прислать комментарий     Решение

Задача 67332

Темы:   [ Геометрическая прогрессия ]
[ Многочлены (прочее) ]
[ Тождественные преобразования ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 3
Классы: 10,11

Петя покрасил 100 натуральных чисел в красный цвет и 100 других натуральных чисел — в синий. Вася выписал на доску 200 выражений: для каждого красного числа $n$ записал $\frac{x^n}{1-x}$, а для каждого синего числа $m$ записал $\frac{x^m}{1-x^{-1}}.$ После этого мальчики сложили все записанные выражения, привели подобные и упростили выражение. Докажите, что у них получился многочлен от $x$.
Прислать комментарий     Решение


Задача 79362

Темы:   [ Геометрическая прогрессия ]
[ Доказательство от противного ]
Сложность: 3
Классы: 8

Имеется несколько гирь, общая масса которых равна 1 кг. Каждой гире присвоен свой номер: 1, 2, 3, .... Доказать, что найдётся такой номер n, что масса гири с номером n строго больше $ {\frac{1}{2^n}}$ кг.
Прислать комментарий     Решение


Задача 35213

Тема:   [ Геометрическая прогрессия ]
Сложность: 3
Классы: 9,10,11

Известно, что сумма первых n членов геометрической прогрессии, состоящей из положительных чисел, равна S, а сумма обратных величин первых n членов этой прогрессии равна R. Найдите произведение первых n членов этой прогрессии.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 74]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .