ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В набор "Юный геометр" входит несколько плоских граней, из которых можно собрать выпуклый многогранник. Юный геометр Саша разделил эти грани на две кучки. Могло ли случиться, что из граней каждой кучки тоже можно собрать выпуклый многогранник?
(И в начале, и в конце каждая из граней набора должна являться гранью многогранника.)

Вниз   Решение


В гоночном турнире 12 этапов и n участников. После каждого этапа все участники в зависимости от занятого места k получают баллы ak (числа ak натуральны, и  a1 > a2 > ... > an).  При каком наименьшем n устроитель турнира может выбрать числа a1, ..., an так, что после предпоследнего этапа при любом возможном распределении мест хотя бы двое участников имели шансы занять первое место.

ВверхВниз   Решение


Можно ли выписать в строчку 2000 чисел так, чтобы сумма любых трех последовательных чисел была отрицательной, а сумма всех чисел - положительной?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 84]      



Задача 88161

Тема:   [ Последовательности (прочее) ]
Сложность: 2-
Классы: 5,6,7

Найдите недостающие числа:

Прислать комментарий     Решение

Задача 98671

Темы:   [ Последовательности (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 2
Классы: 5,6,7

Продолжите последовательность: 2, 6, 12, 20, 30, …
Прислать комментарий     Решение


Задача 103760

Темы:   [ Последовательности (прочее) ]
[ Симметрия и инволютивные преобразования ]
[ Ребусы ]
Сложность: 2+
Классы: 6

Инопланетянин со звезды Тау Кита, прилетев на Землю в понедельник, воскликнул: ''А!''. Во вторник он воскликнул: ''АУ!'', в среду — ''АУУА!'', в четверг — ''АУУАУААУ!''. Что он воскликнет в субботу?

Прислать комментарий     Решение


Задача 35041

Тема:   [ Последовательности (прочее) ]
Сложность: 2+
Классы: 7,8,9

Можно ли выписать в строчку 2000 чисел так, чтобы сумма любых трех последовательных чисел была отрицательной, а сумма всех чисел - положительной?
Прислать комментарий     Решение


Задача 35469

Темы:   [ Последовательности (прочее) ]
[ Тождественные преобразования ]
Сложность: 2+
Классы: 7,8,9

Найдите наибольший член последовательности $x_n = \frac{n-1}{n^2+1}$.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 84]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .