ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 70]      



Задача 66467

Тема:   [ Последовательности (прочее) ]
Сложность: 3
Классы: 8,9,10,11

В строку выписано 39 чисел, не равных нулю. Сумма любых двух соседних чисел положительна, а сумма всех чисел отрицательна. Каким может быть знак произведения всех чисел? (Укажите все варианты и докажите, что других нет.)
Прислать комментарий     Решение


Задача 66472

Тема:   [ Последовательности (прочее) ]
Сложность: 3
Классы: 8,9,10,11

В строку выписано 81 ненулевое число. Сумма любых двух соседних чисел положительна, а сумма всех чисел отрицательна. Каким может быть знак произведения всех чисел?
Прислать комментарий     Решение


Задача 65193

Темы:   [ Последовательности (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 9,10

По кругу в некотором порядке расставлены все натуральные числа от 1 до 1000 таким образом, что каждое из чисел является делителем суммы двух своих соседей. Известно, что рядом с числом k стоят два нечётных числа. Какой чётности может быть число k?
Прислать комментарий     Решение


Задача 65197

Темы:   [ Последовательности (прочее) ]
[ Тождественные преобразования ]
Сложность: 3+
Классы: 9,10

Автор: Креков Д.

По целому числу a построим последовательность  a1 = aa2 = 1 + a1a3 = 1 + a1a2a4 = 1 + a1a2a3,  ... (каждое следующее число на 1 превосходит произведение всех предыдущих). Докажите, что разности ее соседних членов  an+1an  – квадраты целых чисел.

Прислать комментарий     Решение

Задача 65247

Темы:   [ Последовательности (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10,11

Существует ли такая бесконечная последовательность натуральных чисел, что для любого натурального k сумма любых k идущих подряд членов этой последовательности делится на  k + 1?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 70]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .