ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 70]      



Задача 64615

Темы:   [ Последовательности (прочее) ]
[ Простые числа и их свойства ]
[ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 10,11

Все натуральные числа выписали в ряд в некотором порядке (каждое число по одному разу). Обязательно ли найдутся несколько (больше одного) чисел, выписанных подряд (начиная с какого-то места), сумма которых будет простым числом?

Прислать комментарий     Решение

Задача 66032

Темы:   [ Последовательности (прочее) ]
[ Треугольник Паскаля и бином Ньютона ]
[ Четность и нечетность ]
Сложность: 4
Классы: 9,10,11

Изначально на стол кладут 100 карточек, на каждой из которых записано по натуральному числу; при этом среди них ровно 28 карточек с нечётными числами. Затем каждую минуту проводится следующая процедура. Для каждых 12 карточек, лежащих на столе, вычисляется произведение записанных на них чисел, все эти произведения складываются, и полученное число записывается на новую карточку, которая добавляется к лежащим на столе. Можно ли выбрать исходные 100 чисел так, что для любого натурального d на столе рано или поздно появится карточка с числом, кратным 2d?

Прислать комментарий     Решение

Задача 78568

Темы:   [ Последовательности (прочее) ]
[ Принцип крайнего (прочее) ]
[ Свойства модуля. Неравенство треугольника ]
Сложность: 4
Классы: 8,9,10

Дана последовательность ..., a-n,..., a-1, a0, a1,..., an,... бесконечная в обе стороны, причём каждый её член равен $ {\frac{1}{4}}$ суммы двух соседних. Доказать, что если какие-то два её члена равны, то в ней есть бесконечное число пар равных между собой чисел. (Пояснение: два члена, про которые известно, что они равны, не обязательно соседние).
Прислать комментарий     Решение


Задача 79464

Темы:   [ Последовательности (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4
Классы: 11

В некотором царстве, в некотором государстве было выпущено неограниченное количество монет достоинством в n1, n2, n3, ... копеек, где
n1 < n < 2 < n3 < ...  – бесконечная последовательность, состоящая из натуральных чисел. Докажите, что эту последовательность можно оборвать, то есть найдётся такое число N, что любую сумму, которую можно уплатить без сдачи выпущенными монетами, на самом деле можно уплатить только монетами достоинством в n1, n2, ..., nN копеек.

Прислать комментарий     Решение

Задача 98458

Темы:   [ Последовательности (прочее) ]
[ Процессы и операции ]
[ Десятичная система счисления ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9

Неутомимые Фома и Ерёма строят последовательность. Сначала в последовательности одно натуральное число. Затем они по очереди выписывают следующие числа: Фома получает очередное число, прибавляя к предыдущему любую из его цифр, а Ерёма – вычитая из предыдущего любую из его цифр. Докажите, что какое-то число в этой последовательности повторится не меньше 100 раз.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 70]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .