|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи AB и CD – параллельные прямые, AC – секущая (точки B и D находятся по одну сторону от прямой AC), E и F – точки пересечения прямых AB и CD с биссектрисами углов C и A. Известно, что AF = 96, CE = 110. Найдите AC.
В равнобедренный треугольник ABC (AB = BC) вписана окружность. Прямая, параллельная стороне BC и касающаяся окружности, пересекает сторону AB в такой точке N такой, что AN = ⅜ AB. Найдите радиус окружности, если площадь треугольника ABC равна 12. Диагонали четырёхугольника ABCD пересекаются в точке O. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 184]
Диагонали четырёхугольника ABCD пересекаются в точке O.
Среди всех треугольников с заданными сторонами AB и AC найдите тот, у которого наибольшая площадь.
Стороны треугольника не превосходят 1. Докажите, что его площадь не превосходит
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 184] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|