ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

На хорде AC окружности ω выбрали точку B. На отрезках AB и BC как на диаметрах построили окружности ω1 и ω2 с центрами O1 и O2, которые пересекают ω второй раз в точках D и E соответственно. Лучи O1D и O2E пересекаются в точке F. Лучи AD и CE пересекаются в точке G.
Докажите, что прямая FG проходит через середину AC.

Вниз   Решение


Угол наклона всех боковых граней пирамиды SABC к основанию одинаков и равен arctg . Основанием пирамиды является прямоугольный треугольник ABC ( ACB = 90o ); SO – высота пирамиды. Найдите боковую поверхность пирамиды, если OB = , а радиус вписанной в треугольник ABC окружности равен 1.

ВверхВниз   Решение


Катеты AC и CB прямоугольного треугольника ABC равны 15 и 8 соответственно. Из центра C радиусом CB описана дуга, отсекающая от гипотенузы часть BD. Найдите BD.

ВверхВниз   Решение


На сколько нулей оканчивается число 100!?

ВверхВниз   Решение


Можно ли какой-нибудь выпуклый многоугольник разрезать на конечное число невыпуклых четырехугольников?

ВверхВниз   Решение


Существует ли выпуклый 1978-угольник, у которого все углы выражаются целым числом градусов?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 509]      



Задача 116530

Темы:   [ Многоугольники (прочее) ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 2+
Классы: 8,9,10

Автор: Фольклор

Можно ли начертить два треугольника так, чтобы образовался девятиугольник?

Прислать комментарий     Решение

Задача 115451

Темы:   [ Сумма внутренних и внешних углов многоугольника ]
[ Неравенство треугольника (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Четырехугольник: вычисления, метрические соотношения. ]
Сложность: 3-
Классы: 8,9,10

Пусть α , β , γ и δ  — градусные меры углов некоторого выпуклого четырехугольника. Всегда ли из этих четырех чисел можно выбрать три числа так, чтобы они выражали длины сторон некоторого треугольника (например, в метрах)?
Прислать комментарий     Решение


Задача 32007

Темы:   [ Сумма внутренних и внешних углов многоугольника ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 3-
Классы: 7,8,9

Существует ли выпуклый 1978-угольник, у которого все углы выражаются целым числом градусов?

Прислать комментарий     Решение

Задача 116990

Темы:   [ Правильные многоугольники ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 9,10,11

Автор: Фольклор

Отмечены вершины и середины сторон правильного десятиугольника (то есть всего отмечено 20 точек).
Сколько существует треугольников с вершинами в отмеченных точках?

Прислать комментарий     Решение

Задача 32899

Темы:   [ Правильные многоугольники ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Перегруппировка площадей ]
Сложность: 3
Классы: 9,10,11

Дан правильный 4n-угольник A1A2...A4n площади S, причём  n > 1.  Найдите площадь четырёхугольника A1AnAn +1An+2.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 509]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .