ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Прямая касается окружности с центром O в точке A. Точка C на этой прямой и точка D на окружности расположены по одну сторону от прямой OA. Докажите, что угол CAD вдвое меньше угла AOD.

Вниз   Решение


Дана четырёхугольная пирамида SABCD , основание которой – параллелограмм ABCD . Точки M , N и K лежат на ребрах AS , BS и CS соответственно, причём AM:MS = 1:2 , BN:NS = 1:3 , CK:KS = 1:1 . Постройте сечение пирамиды плоскостью MNK . В каком отношении эта плоскость делит ребро SD ?

ВверхВниз   Решение


Автор: Фольклор

Верно ли, что если  b > a + c > 0,  то квадратное уравнение  ax² + bx + c = 0   имеет два корня?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 979]      



Задача 116144

Темы:   [ Разложение на множители ]
[ Простые числа и их свойства ]
Сложность: 2
Классы: 7,8,9

Найдите все пары простых чисел, разность квадратов которых является простым числом.

Прислать комментарий     Решение

Задача 116445

Темы:   [ Исследование квадратного трехчлена ]
[ Соображения непрерывности ]
Сложность: 2
Классы: 8,9,10

Автор: Фольклор

Верно ли, что если  b > a + c > 0,  то квадратное уравнение  ax² + bx + c = 0   имеет два корня?

Прислать комментарий     Решение

Задача 116475

Тема:   [ Формулы сокращенного умножения (прочее) ]
Сложность: 2
Классы: 7,8,9

Вычислите:  

Прислать комментарий     Решение

Задача 116731

Темы:   [ Многочлены (прочее) ]
[ Уравнения в целых числах ]
Сложность: 2
Классы: 7,8,9

Автор: Фольклор

Существуют ли два одночлена, произведение которых равно –12а4b², а сумма является одночленом с коэффициентом 1?

Прислать комментарий     Решение

Задача 35257

Тема:   [ Формулы сокращенного умножения ]
Сложность: 2
Классы: 8,9

Доказать, что если b=a-1, то

(a+b)(a2+b2)(a4+b4)…(a32+b32)=a64-b64.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 979]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .