|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Треугольники ABC и A1B1C1 таковы, что их соответственные углы равны или составляют в сумме 180°. Назовём треугольник рациональным, если все его углы измеряются рациональным числом градусов. Назовём точку внутри треугольника рациональной, если при соединении её отрезками с вершинами мы получим три рациональных треугольника. Докажите, что внутри любого остроугольного рационального треугольника найдутся как минимум три различные рациональные точки. Аня называет дату красивой, если все 6 цифр её записи различны. Например, 19.04.23 — красивая дата, а 19.02.23 и 01.06.23 — нет. А сколько всего красивых дат в 2023 году? Грани выпуклого многогранника – подобные треугольники. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 80]
Существует ли выпуклый многогранник, у которого есть диагонали и каждая диагональ меньше любого ребра?
Грани выпуклого многогранника – подобные треугольники.
Из каждой вершины выпуклого многогранника выходят ровно три ребра, причём хотя бы два из этих трёх рёбер равны.
Какое наибольшее количество треугольных граней может иметь пятигранник?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 80] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|