|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Постройте прямую, проходящую через данную точку и касающуюся данной окружности. Корабль в тумане пытается пристать к берегу. Экипаж не знает, в какой стороне находится берег, но видит маяк, находящийся на маленьком острове в $10$ км от берега, и понимает, что расстояние от корабля до маяка не превышает $10$ км (точное расстояние до маяка неизвестно). Маяк окружен рифами, поэтому приближаться к нему нельзя. Может ли корабль достичь берега, проплыв не больше $75$ км? (Береговая линия – прямая, траектория до начала движения вычерчивается на дисплее компьютера, после чего автопилот ведет корабль по ней.) Разделите данный отрезок пополам с помощью линейки с параллельными краями и без делений.
Внутри треугольника $ABC$ на биссектрисе угла $A$ выбрана произвольная точка $J$. Лучи $BJ$ и $CJ$ пересекают стороны $AC$ и $AB$ в точках $K$ и $L$ соответственно. Касательная к описанной окружности треугольника $AKL$ в точке $A$ пересекает прямую $BC$ в точке $P$. Докажите, что $PA=PJ$. На биссектрисе внешнего угла C треугольника ABC взята точка M, отличная от C. Докажите, что MA + MB > CA + CB. Функции f(x) – x и f(x²) – x6 определены при всех положительных x и возрастают. |
Страница: 1 2 3 4 5 >> [Всего задач: 23]
Дана функция f, определённая на множестве действительных чисел и принимающая действительные значения. Известно, что для любых x и y, таких, что x > y, верно неравенство (f(x))² ≤ f(y). Докажите, что множество значений функции содержится в промежутке [0,1].
Функция f(x) на отрезке [a, b] равна максимуму из нескольких функций вида y = C·10–|x–d| (с различными d и C, причём все C положительны). Дано,
что
Функции f(x) – x и f(x²) – x6 определены при всех положительных x и возрастают.
Страница: 1 2 3 4 5 >> [Всего задач: 23] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|