|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На катетах и гипотенузе прямоугольного треугольника построены квадраты, расположенные вне треугольника. Вычислить площадь шестиугольника, вершины которого совпадают с теми вершинами квадратов, которые не принадлежат данному треугольнику. Длина гипотенузы c и сумма длин катетов s известны. Каждая сторона правильного треугольника разбита на n равных отрезков, и
через все точки деления проведены прямые, параллельные сторонам. Данный
треугольник разбился на n² маленьких треугольников-клеток.
Треугольники, расположенные между двумя соседними параллельными прямыми,
образуют полоску. Окружность касается стороны BC треугольника ABC в её середине M, проходит через точку A, а отрезки AB и AC пересекает в точках D и E соответственно. Найдите угол A, если известно, что BC = 12, AD = 3,5 и EC = Вписанная окружность треугольника ABC касается сторон AC и BC в точках B1 и A1. Докажите, что если AC > BC, то AA1 > BB1. Докажите, что числа Фибоначчи {Fn} удовлетворяют соотношению Получите отсюда равенство
arcctg 2 + arcctg 5 + arcctg 13 +...+ arcctg F2n + 1 +...=
Можно ли осветить круглую арену 100 прожекторами так, чтобы каждый из них освещал выпуклую фигуру, никакой из них не освещал всю арену, но любые два из них вместе уже освещали всю арену? Функции f(x) – x и f(x²) – x6 определены при всех положительных x и возрастают. |
Страница: 1 2 3 4 5 >> [Всего задач: 23]
Дана функция f, определённая на множестве действительных чисел и принимающая действительные значения. Известно, что для любых x и y, таких, что x > y, верно неравенство (f(x))² ≤ f(y). Докажите, что множество значений функции содержится в промежутке [0,1].
Функция f(x) на отрезке [a, b] равна максимуму из нескольких функций вида y = C·10–|x–d| (с различными d и C, причём все C положительны). Дано,
что
Функции f(x) – x и f(x²) – x6 определены при всех положительных x и возрастают.
Страница: 1 2 3 4 5 >> [Всего задач: 23] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|