|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Решить систему: 10x1 + 3x2 + 4x3 + x4 + x5 = 0, 11x2 + 2x3 + 2x4 + 3x5 + x6 = 0, 15x3 + 4x4 + 5x5 + 4x6 + x7 = 0, 2x1 + x2 – 3x3 + 12x4 – 3x5 + x6 + x7 = 0, 6x1 – 5x2 + 3x3 – x4 + 17x5 + x6 = 0, 3x1 + 2x2 – 3x3 + 4x4 + x5 – 16x6 + 2x7 = 0, 4x1 – 8x2 + x3 + x4 – 3x5 + 19x7 = 0. В треугольнике ABC высота BD образует со стороной BC угол в 45°. Считается, что прямая BD, содержащая высоту, уже построена. Как одним движением циркуля построить ортоцентр треугольника ABC? Дан трёхгранный угол. Рассмотрим три плоскости, содержащие его грани. Эти плоскости разбивают пространство на восемь трёхгранных углов. а) Найдите плоские углы всех образовавшихся трёхгранных углов, если плоские углы исходного трёхгранного угла равны x , y и z . б) Найдите двугранные углы всех образовавшихся трёхгранных углов, если двугранные углы исходного трёхгранного угла равны α , β и γ . В треугольнике ABC проведены триссектрисы (лучи, делящие углы на три равные части). Ближайшие к стороне BC триссектрисы углов B и C пересекаются в точке A1; аналогично определим точки B1 и C1 (см. рис.). Докажите, что треугольник A1B1C1 равносторонний. Упростить выражение Через точку Y на стороне AB равностороннего треугольника ABC проведена прямая, пересекающая сторону BC в точке Z, а продолжение стороны CA за точку A – в точке X. Известно, что XY = YZ и AY = BZ. Докажите, что прямые XZ и BC перпендикулярны. Докажите, что при центральной симметрии окружность переходит в окружность. В очереди к стоматологу стоят 30 ребят: мальчиков и девочек. Часы на стене показывают 8:00. Как только начинается новая минута, каждый мальчик, за которым стоит девочка, пропускает её вперед. Докажите, что перестановки в очереди закончатся до 8:30, когда откроется дверь кабинета. Квадрат ABCD и окружность пересекаются в восьми точках так, что образуются четыре криволинейных треугольника: AEF, BGH, CIJ, DKL (EF, GH, IJ, KL – дуги окружности). Докажите, что Среди четырёх людей нет трёх с одинаковым именем, или с одинаковым отчеством, или с одинаковой фамилией, но у каждых двух совпадает или имя, или отчество, или фамилия. Может ли такое быть?
|
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1041]
Можно ли расположить 12 одинаковых монет вдоль стенок большой квадратной коробки так, чтобы вдоль каждой стенки лежало ровно
Побейте его рекорд — закрасьте а) 32 клетки; б) 33 клетки.
На доске записаны числа 1, 21, 2², 2³, 24, 25. Разрешается стереть любые два числа и вместо них записать их разность – неотрицательное число.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1041] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|