|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На доске записано произведение a1a2... a100, где a1, ..., a100 – натуральные числа. Рассмотрим 99 выражений, каждое из которых получается заменой одного из знаков умножения на знак сложения. Известно, что значения ровно 32 из этих выражений чётные. Какое наибольшее количество чётных чисел среди a1, a2, ..., a100 могло быть? Назовём натуральное число почти квадратом, если оно равно произведению двух последовательных натуральных чисел. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 1041]
Гриб называется плохим, если в нём не менее 10 червей. В лукошке 90 плохих и 10 хороших грибов. Могут ли все грибы стать хорошими после того, как некоторые черви переползут из плохих грибов в хорошие?
Можно ли поставить в ряд все натуральные числа от 1 до 100 так, чтобы каждые два соседних числа отличались либо на 2, либо в два раза?
Семь грибников собрали вместе 100 грибов. Обязательно ли найдутся два грибника, собравшие вместе не менее чем 36 грибов, если количества грибов, собранных каждым, попарно различаются?
Можно ли раздать шести детям 40 конфет так, чтобы у всех было разное количество конфет и у каждых двух вместе было менее половины всех конфет?
Про четырехугольник известно, что существуют две прямые, каждая из которых разбивает его на два равнобедренных прямоугольных треугольника. Обязательно ли он является квадратом?
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 1041] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|