|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В некотором царстве, в некотором государстве есть несколько городов, причём расстояния между ними все попарно различны. В одно прекрасное утро из каждого города вылетает по одному самолету, который приземляется в ближайшем соседнем городе. Может ли в одном городе приземлиться более пяти самолетов? а) Найдите сумму всех трёхзначных чисел, которые можно записать с помощью цифр 1, 2, 3, 4 (цифры могут повторяться). Даны точки A(- 2;0), B(1;6), C(5;4) и D(2; - 2). Докажите, что четырехугольник ABCD — прямоугольник.
Докажите тождество: 13 + 23 +...+ n3 = (1 + 2 +...+ n)2. В окружность вписан прямоугольник ABCD , сторона AB которого равна a . Из конца K диаметра KP , параллельного стороне AB , сторона BC видна под углом β . Найдите радиус окружности. Докажите, что число способов расставить на шахматной доске максимальное число ферзей чётно. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 161]
На клетчатой доске 5×5 расставили максимальное число шахматных коней так, чтобы они не били друг друга.
Рассматривается доска 8×8, клетки которой пока не окрашены. Сколькими способами можно раскрасить доску в чёрный и белый цвета так, чтобы чёрных клеток было 31 и никакие две чёрные клетки не имели общей стороны? (Два способа раскраски считаются различными, если найдётся клетка, которая при одном из этих способах раскраски белая, а при другом – чёрная.)
На полях A, B и C в левом нижнем углу шахматной доски стоят белые ладьи (см. рис.). Разрешается делать ходы по обычным правилам, однако после любого хода каждая ладья должна быть под защитой какой-нибудь другой ладьи. Можно ли за несколько ходов переставить ладьи так, чтобы каждая попала на обозначенное той же буквой поле в правом верхнем углу?
На клетчатой доске размером 23×23 клетки стоят четыре фишки: в левом нижнем и в правом верхнем углах доски – по белой фишке, а в левом верхнем и в правом нижнем углах - по чёрной. Белые и чёрные фишки ходят по очереди, начинают белые. Каждым ходом одна из фишек сдвигается на любую соседнюю (по стороне) свободную клетку. Белые фишки стремятся попасть в две соседние по стороне клетки. Могут ли чёрные им помешать?
Докажите, что число способов расставить на шахматной доске максимальное число ферзей чётно.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 161] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|