ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 149]      



Задача 66183

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
[ Принцип Дирихле (прочее) ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8,9,10

Какое наименьшее число ладей нужно поставить на шахматную доску 8×8, чтобы все белые клетки были под боем этих ладей? (Под боем ладьи считаются все клетки строки и столбца, в которых находится ладья.)

Прислать комментарий     Решение

Задача 66186

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
[ Принцип Дирихле (прочее) ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10,11

Клетки доски 9×9 раскрасили в шахматном порядке в чёрный и белый цвета (угловые клетки белые). Какое наименьшее число ладей нужно поставить на эту доску, чтобы все белые клетки оказались под боем этих ладей? (Под боем ладьи считаются все клетки строки и столбца, в которых находится ладья.)

Прислать комментарий     Решение

Задача 79606

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
[ Шахматная раскраска ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 7,8,9

Может ли во время шахматной партии на каждой из 30 диагоналей оказаться нечётное число фигур?

Прислать комментарий     Решение

Задача 98370

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Шахматная раскраска ]
[ Перебор случаев ]
Сложность: 3+
Классы: 7,8,9

На клетчатой доске 5×5 расставили максимальное число шахматных коней так, чтобы они не били друг друга.
Докажите, что такая расстановка – единственная.

 
Прислать комментарий     Решение

Задача 98498

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3+
Классы: 8,9

Рассматривается доска 8×8, клетки которой пока не окрашены. Сколькими способами можно раскрасить доску в чёрный и белый цвета так, чтобы чёрных клеток было 31 и никакие две чёрные клетки не имели общей стороны? (Два способа раскраски считаются различными, если найдётся клетка, которая при одном из этих способах раскраски белая, а при другом – чёрная.)

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .