|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Дан куб 4×4×4. Расставьте в нем 16 ладей так, чтобы они не били друг друга. a1, a2, a3, ..., an, ... – возрастающая последовательность натуральных чисел. Известно, что an+1 ≤ 10an при всех натуральных n. Бизнесмен Борис Михайлович решил устроить с трактористом Васей гонки по шоссе. Поскольку его "Лексус" едет вдесятеро быстрее Васиного трактора, он дал Васе фору и выехал через час после Васи. После того, как Васин трактор проехал ровно половину запланированной трассы, у него отвалилась рессора, поэтому оставшуюся часть пути Вася проехал вдвое медленнее, чем первую. В результате встречи с Васиной рессорой Борису Михайловичу пришлось заехать в оказавшийся рядом сервис на 4 часа, после чего он продолжил путь вдвое медленнее, чем раньше. Докажите, что в результате он отстал от Васи не менее, чем на час. В квадрате $2025 \times 2025$ отмечено несколько клеток. За один ход Кирилл может узнать количество отмеченных клеток в любом клетчатом квадрате со стороной меньше $2025$ внутри исходного квадрата. Какого наименьшего количества ходов точно хватит, чтобы узнать количество отмеченных клеток во всём квадрате? |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 95]
Докажите, что если (p, q) = 1 и p/q – рациональный корень многочлена P(x) = anxn + ... + a1x + a0 с целыми коэффициентами, то
Назовём треугольник рациональным, если все его углы измеряются рациональным числом градусов. Назовём точку внутри треугольника рациональной, если при соединении её отрезками с вершинами мы получим три рациональных треугольника. Докажите, что внутри любого остроугольного рационального треугольника найдутся как минимум три различные рациональные точки.
Существует ли такое натуральное n, что
Квадратный трёхчлен f(x) = ax² + bx + c, не имеющий корней, таков, что коэффициент b рационален, а среди чисел c и f(c) ровно одно иррационально.
а) Привести пример такого положительного a, что {a} + {1/a} = 1.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 95] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|