|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Дан трёхгранный угол с вершиной O и точка A на его ребре. По двум другим его рёбрам скользят точки B и C . Найдите геометрическое место точек пересечения медиан треугольников ABC . Докажите, что: а) ma2 = (2b2 + 2c2 - a2)/4; б) ma2 + mb2 + mc2 = 3(a2 + b2 + c2)/4. Докажите, что система неравенств Решите уравнение: Дан выпуклый четырехугольник ABCD. Прямые BC и AD пересекаются в точке O, причём B лежит на отрезке O и A на отрезке OD. I – центр вписанной окружности треугольника OAB, J – центр вневписанной окружности треугольника OCD, касающейся стороны CD и продолжений двух других сторон. Перпендикуляры, опущенные из середины отрезка IJ на прямые BC и AD, пересекают соответствующие стороны четырёхугольника (не продолжения) в точках X и Y. Доказать, что отрезок XY делит периметр четырёхугольника ABCD пополам, причём из всех отрезков с этим свойством и концами на BC и AD XY имеет наименьшую длину. В треугольнике ABC биссектриса AD, высота BE и медиана CF пересекаются в точке O. Найдите ∠A, если
AF =
С помощью циркуля и линейки постройте треугольник ABC по стороне
AB = c, высоте
CC1 = h и разности углов
|
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 121]
Найдите наименьшее натуральное значение n, при котором число n! делится на 990.
Может ли n! оканчиваться ровно на пять нулей?
На сколько нулей оканчивается число 100!?
Дано число 1·2·3·4·5·...·56·57.
Докажите, что число 100! не является полным квадратом.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 121] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|