ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

а) Покажите, что среди любых шести целых чисел найдутся два, разность которых кратна 5.
б) Останется ли это утверждение верным, если вместо разности взять сумму?

Вниз   Решение


Какое наибольшее число острых углов может встретиться в выпуклом многоугольнике?

ВверхВниз   Решение


Известно, что в некоторую пирамиду можно вписать шар. Докажите, что объём этой пирамиды равен трети произведения радиуса этого шара на полную поверхность пирамиды.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 267]      



Задача 61001

 [Формулы сокращенного умножения]
Тема:   [ Разложение на множители ]
Сложность: 2
Классы: 7,8,9

Докажите следующие формулы:

an+1bn+1 = (a – b)(an + an–1b + ... + bn);

a2n+1 + b2n+1 = (a + b)(a2na2n–1b + a2n–2b2 – ... + b2n).

Прислать комментарий     Решение

Задача 116144

Темы:   [ Разложение на множители ]
[ Простые числа и их свойства ]
Сложность: 2
Классы: 7,8,9

Найдите все пары простых чисел, разность квадратов которых является простым числом.

Прислать комментарий     Решение

Задача 32010

Темы:   [ Разложение на множители ]
[ Уравнения в целых числах ]
Сложность: 2+
Классы: 6,7,8

Сколькими способами число 1979 можно представить в виде разности двух квадратов натуральных чисел?

Прислать комментарий     Решение

Задача 34938

Темы:   [ Разложение на множители ]
[ Арифметика остатков (прочее) ]
Сложность: 2+

Какие остатки могут получиться при делении  n³ + 3  на  n + 1  при натуральном  n > 2?

Прислать комментарий     Решение

Задача 60652

Тема:   [ Разложение на множители ]
Сложность: 2+
Классы: 8,9

Докажите, что числа    а)  232001 + 1;     б)  232001 – 1   – составные.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 267]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .