ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В треугольнике ABC угол A больше угла B. Докажите, что длина стороны BC больше половины длины стороны AB.

Вниз   Решение


В пространстве расположены 2n точек, никакие четыре из которых не лежат в одной плоскости. Проведены  n² + 1  отрезков с концами в этих точках. Докажите, что проведённые отрезки образуют
  а) хотя бы один треугольник;
  б) не менее n треугольников.

ВверхВниз   Решение


В числовом наборе 100 чисел. Если выкинуть одно число, то медиана оставшихся чисел будет равна 78. Если выкинуть другое число, то медиана оставшихся чисел будет 66. Найдите медиану всего набора.

ВверхВниз   Решение


В какой системе счисления справедливо равенство 3 · 4 = 10?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 53]      



Задача 108974

Тема:   [ Тождественные преобразования ]
Сложность: 4
Классы: 9,10,11

Зная, что x2+x+1=0 , определить x14+1/x14 .
Прислать комментарий     Решение


Задача 110174

Тема:   [ Тождественные преобразования ]
Сложность: 4+
Классы: 8,9,10,11

Известно, что существует число S , такое, что если a+b+c+d=S и +++=S ( a , b , c , d отличны от нуля и единицы), то + + += S . Найти S .
Прислать комментарий     Решение


Задача 73562

Темы:   [ Тождественные преобразования ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
Сложность: 5
Классы: 8,9,10

Если сумма дробей     равна 0, то сумма дробей     тоже равна 0. Докажите это.

Прислать комментарий     Решение

Задача 35676

Темы:   [ Математическая логика (прочее) ]
[ Неравенства. Метод интервалов ]
Сложность: 2+
Классы: 7,8,9

Пусть x - некоторое натуральное число. Среди утверждений: 2x больше 70;
x меньше 100;
3x больше 25;
x не меньше 10;
x больше 5;
три верных и два неверных. Чему равно x?
Прислать комментарий     Решение


Задача 35469

Темы:   [ Последовательности (прочее) ]
[ Тождественные преобразования ]
Сложность: 2+
Классы: 7,8,9

Найдите наибольший член последовательности $x_n = \frac{n-1}{n^2+1}$.
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .