ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Две равные окружности с центрами O1 и O2 пересекаются в точках A и B. Отрезок O1O2 пересекает эти окружности в точках M и N.
Докажите, что четырёхугольники O1AO2B и AMBN – ромбы.

Вниз   Решение


На отрезке длины 1 отмечено несколько интервалов. Известно, что расстояние между любыми двумя точками, принадлежащими одному или разным интервалам, отлично от 0,1. Докажите, что сумма длин отмеченных интервалов не превосходит 0,5.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 266]      



Задача 76414

Темы:   [ Квадратные уравнения и системы уравнений ]
[ Средние величины ]
Сложность: 2
Классы: 8,9

Определить отношение двух чисел, если отношение их среднего арифметического к среднему геометрическому равно 25 : 24.

Прислать комментарий     Решение

Задача 116445

Темы:   [ Исследование квадратного трехчлена ]
[ Соображения непрерывности ]
Сложность: 2
Классы: 8,9,10

Автор: Фольклор

Верно ли, что если  b > a + c > 0,  то квадратное уравнение  ax² + bx + c = 0   имеет два корня?

Прислать комментарий     Решение

Задача 64822

Темы:   [ Квадратные уравнения. Формула корней ]
[ Уравнения в целых числах ]
Сложность: 2+
Классы: 8,9,10

Решите уравнение:  x(x + 1) = 2014·2015.

Прислать комментарий     Решение

Задача 104104

Темы:   [ Квадратный трехчлен (прочее) ]
[ Характеристические свойства и рекуррентные соотношения ]
Сложность: 2+
Классы: 7,8,9

Найдите все такие функции  f(x), что  f(2x + 1) = 4x² + 14x + 7.

Прислать комментарий     Решение

Задача 115968

Тема:   [ Исследование квадратного трехчлена ]
Сложность: 2+
Классы: 8,9,10

Автор: Фольклор

Известно, что разность кубов корней квадратного уравнения  ax² + bx + c = 0  равна 2011. Сколько корней имеет уравнение  ax² + 2bx + 4c = 0?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 266]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .