ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Найдите площадь сечения, проведённого через высоту и одно из ребёр правильного тетраэдра, если ребро тетраэдра равно a .

Вниз   Решение


K членов Жюри Десятой Всероссийской олимпиады школьников по информатике решили отметить столь круглую годовщину в одном из лучших ресторанов на Невском проспекте. На десерт вниманию Жюри предложили торт, имеющий форму прямоугольной призмы с выпуклым N-угольником в основании. Жюри вооружается десертными ножами и собирается справедливо разделить торт на K частей равного объема. Ножами можно проводить прямые вертикальные разрезы от одной границы торта до другой; различные разрезы могут иметь общие точки лишь в своих концевых вершинах.

Напишите программу, помогающую членам Жюри построить требуемые K-1 разрезов.

Входные данные

В первой строке входного файла содержатся два целых числа K и N (1 ≤ K, N ≤ 50). Далее следуют N пар вещественных чисел – координаты
последовательно расположенных вершин N-угольника.

Выходные данные

Каждый из K-1 разрезов в выходном файле должен быть представлен четверкой чисел – координатами своих концов. Все числа должны быть разделены пробелами и/или символами перевода строки.

Пример входного файла

4 3
2 1
0 0.5
4 0.5

Пример выходного файла

2 1 1 0.5
2 1 2 0.5
2 1 3 0.5

ВверхВниз   Решение


Предложенный выше алгоритм перемножения многочленов требует порядка n2 действий для перемножения двух многочленов степени n. Придумать более эффективный (для больших n) алгоритм, которому достаточно порядка nlog 4/log 3 действий.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 107]      



Задача 78690

Тема:   [ Средняя линия трапеции ]
Сложность: 3+
Классы: 8,9

Старинный замок был обнесён треугольной стеной. Каждая сторона стены была поделена на три равные части, и в этих точках, а также в вершинах были построены башни. Всего вдоль стены было 9 башен: A, E, F, B, K, L, C, M, N. Со временем все стены и башни, кроме башен E, K, M, разрушились. Как по оставшимся башням определить, где находились башни A, B, C, если известно, что башни A, B, C стояли в вершинах?

Прислать комментарий     Решение

Задача 111554

Темы:   [ Средняя линия трапеции ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

Основания трапеции равны 17 и 25. Найдите длину отрезка, соединяющего середины диагоналей.

Прислать комментарий     Решение

Задача 115632

Темы:   [ Средняя линия трапеции ]
[ Медиана, проведенная к гипотенузе ]
[ Окружность, вписанная в угол ]
Сложность: 3+
Классы: 8,9

Окружность, построенная как на диаметре на меньшей боковой стороне прямоугольной трапеции, касается большей боковой стороны, равной a.
Найдите среднюю линию трапеции.

Прислать комментарий     Решение

Задача 54177

Темы:   [ Средняя линия трапеции ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 3+
Классы: 8,9

На прямую, проходящую через вершину A треугольника ABC, опущены перпендикуляры BD и CE. Докажите, что середина стороны BC равноудалена от точек D и E.

Прислать комментарий     Решение


Задача 54171

Темы:   [ Средняя линия трапеции ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 4-
Классы: 8,9

Дана трапеция ABCD с основаниями AD и BC. Биссектрисы углов при вершинах A и B пересекаются в точке M, а биссектрисы углов при вершинах C и D – в точке N. Найдите MN, если известно, что  AB = a,  BC = b,  CD = c  и  AD = d.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 107]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .