|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В каждой вершине куба записано по числу. Вместо каждого числа записывают среднее арифметическое чисел, стоящих в трёх соседних вершинах (числа заменяют одновременно). После десяти таких операций в каждой вершине оказалось исходное число. Обязательно ли все исходные числа были одинаковы? Можно ли уместить два точных куба между соседними точными квадратами? Дан треугольник ABC. Точки M1, M2, M3 – середины сторон AB, BC и AC, a точки H1, H2, H3 – основания высот, лежащие на тех же сторонах. Дан отрезок длины Отрезок единичной длины разбили на 11 отрезков, длина каждого из которых не превосходит а. |
Страница: 1 [Всего задач: 5]
Можно ли уместить два точных куба между соседними точными квадратами?
Дан отрезок длины
Есть шесть монет, одна из которых фальшивая (она отличается по весу от настоящей, но её вес, как и вес настоящей монеты, неизвестен).
На сторонах прямоугольного треугольника ABC построены во внешнюю сторону квадраты с центрами D, E, F.
На плоскости лежал куб. Его перекатили несколько раз (через рёбра) так, что куб снова оказался на исходном месте той же гранью вверх.
Страница: 1 [Всего задач: 5] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|