ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]      



Задача 103932

Темы:   [ Длины сторон, высот, медиан и биссектрис ]
[ Хорды и секущие (прочее) ]
Сложность: 4-
Классы: 8,9,10

В окружности с центром O проведены две параллельные хорды AB и CD. Окружности с диаметрами AB и CD пересекаются в точке P.
Доказать, что середина отрезка OP равноудалена от прямых AB и CD.

Прислать комментарий     Решение

Задача 103936

Темы:   [ Правильный (равносторонний) треугольник ]
[ Симметрия помогает решить задачу ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 4-
Классы: 8,9,10

Точки A1, B1, C1 – середины сторон правильного треугольника ABC. Три параллельные прямые, проходящие через A1, B1, C1, пересекают, соответственно, прямые B1C1, C1A1, A1B1 в точках A2, B2, C2. Доказать, что прямые AA2, BB2, CC2 пересекаются в одной точке, лежащей на описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 103938

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Теорема синусов ]
[ Угол между касательной и хордой ]
[ ГМТ - прямая или отрезок ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 9,10

Внутри вписанного четырёхугольника ABCD существует точка K, расстояния от которой до сторон ABCD пропорциональны этим сторонам.
Доказать, что K – точка пересечения диагоналей ABCD.

Прислать комментарий     Решение

Задача 103939

Темы:   [ Две касательные, проведенные из одной точки ]
[ Средняя линия трапеции ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC угол A равен α,  BC = a.  Вписанная окружность касается прямых AB и AC в точках M и P.
Найти длину хорды, высекаемой на прямой MP окружностью с диаметром BC.

Прислать комментарий     Решение

Задача 108096

Темы:   [ ГМТ с ненулевой площадью ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 4-
Классы: 8,9

Точки A и B, лежащие на окружности разбивают её на две дуги. Найдите геометрическое место середин всевозможных хорд, концы которых лежат на разных дугах AB.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .