ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 [Всего задач: 35]      



Задача 78202

Темы:   [ Комплексные числа в геометрии ]
[ Выпуклые многоугольники ]
Сложность: 4
Классы: 10,11

Даны n комплексных чисел C1, C2,..., Cn, таких, что если их представлять себе как точки плоскости, то они являются вершинами выпуклого n-угольника. Доказать, что если комплексное число z обладает тем свойством, что

$\displaystyle {\frac{1}{z-C_1}}$ + $\displaystyle {\frac{1}{z-C_2}}$ + ... + $\displaystyle {\frac{1}{z-C_n}}$ = 0,

то точка плоскости, соответствующая z, лежит внутри этого n-угольника.
Прислать комментарий     Решение

Задача 78173

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ ГМТ (прочее) ]
Сложность: 4+
Классы: 8,9,10

Дан квадрат со стороной 1. Найти геометрическое место точек, сумма расстояний от которых до сторон этого квадрата или их продолжений равна 4.
Прислать комментарий     Решение


Задача 78179

Темы:   [ Окружности (построения) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4+
Классы: 10,11

Построить окружность, проходящую через две данные точки и отсекающую от данной окружности хорду данной длины.
Прислать комментарий     Решение


Задача 78177

Тема:   [ Касательные прямые и касающиеся окружности (прочее) ]
Сложность: 5-
Классы: 9,10

Даны две непересекающиеся окружности с центрами в точках O1 и O2. Пусть a1 и a2 — внутренние касательные к этим окружностям, a3 и a4 — внешние касательные к ним. Пусть, далее, a5 и a6 — касательные к окружности с центром в O1, проведённые из точки O2, a7 и a8 — касательные к окружности с центром в точке O2, проведённые из точки O1. Обозначим через O точку пересечения a1 и a2. Доказать, что с центром в точке O можно провести две окружности так, чтобы первая касалась a3 и a4, вторая касалась a5, a6, a7, a8, причём радиус второй в два раза меньше радиуса первой.
Прислать комментарий     Решение


Задача 78201

Темы:   [ Площадь круга, сектора и сегмента ]
[ Покрытия ]
Сложность: 5
Классы: 10,11

Даны несколько перекрывающихся кругов, занимающие на плоскости площадь, равную 1. Доказать, что из них можно выбрать некоторое количество попарно неперекрывающихся, чтобы их общая площадь была не менее $ {\frac{1}{9}}$.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .